
1 of 11

CSE 142, Spring 2009, Sample Final Exam #1

Name: ___

Section: ___________________ TA: ___________________

Student ID #: ___________________

Rules:

 You have 110 minutes to complete this exam.

You will receive a deduction if you keep working after the instructor calls for papers.

 This test is open-book/notes.

 You may not use any electronic device of any kind including calculators.

 Your code will be graded on proper behavior/output, not on style.

 You do not need to write any import statements in your code.

 Do not abbreviate any code that you write.

 Do not abbreviate any answer asking for output (show the complete output).

 If you enter the room, you must turn in an exam and will not be permitted to leave without doing so.

 You must show your Student ID to a TA or instructor for your submitted exam to be accepted.

Good luck!

Problem Description Earned Max

1 Array Simulation 10

2 Inheritance 7

3 Parameters / References 8

4 Token-Based File Processing 8

5 Line-Based File Processing 10

6 Arrays 10

7 ArrayList 8

8 Critters 15

9 Arrays 14

10 Programming 10

TOTAL Total Points 100

2 of 11

1. Array Simulation, 10 points

Consider the following method:

public static void arrayMystery(int[] a) {

 for (int i = a.length - 2; i > 0; i--) {

 if (a[i - 1] < a[i + 1]) {

 a[i] += a[i - 1];

 } else {

 a[i] += a[i + 1];

 }

 }

}

Indicate in the right-hand column what values would be stored in the array after the method arrayMystery executes

if the array in the left-hand column is passed as its parameter.

Original Contents of Array Final Contents of Array

int[] a1 = {1, 2, 3};

arrayMystery(a1);

int[] a2 = {8, 2, 3, 1, 6};

arrayMystery(a2);

int[] a3 = {1, 1, 1, 1, 1, 1};

arrayMystery(a3);

int[] a4 = {40, 10, 25, 5, 10, 30};

arrayMystery(a4);

int[] a5 = {15, 6, -1, 4, 8, -2, 7, 4};

arrayMystery(a5);

_

3 of 11

2. Inheritance, 7 points

Assume the following four classes have been defined:

public class McCain extends Biden {

 public void republican() {

 System.out.print("mccain-R ");

 }

}

public class Palin {

 public void republican() {

 System.out.print("palin-R ");

 }

 public void democrat() {

 republican();

 System.out.print("palin-D ");

 }

 public String toString() {

 return "palin";

 }

}

public class Obama extends Palin {

 public void republican() {

 super.republican();

 System.out.print("obama-R ");

 }

}

public class Biden extends Palin {

 public String toString() {

 return "biden";

 }

 public void democrat() {

 System.out.print("biden-D ");

 super.democrat();

 }

}

Given the classes above, what output is produced by the following code?

Palin[] politicians = {new Biden(), new Palin(), new McCain(), new Obama()};

for (int i = 0; i < politicians.length; i++) {

 System.out.println(politicians[i]);

 politicians[i].republican();

 System.out.println();

 politicians[i].democrat();

 System.out.println();

 System.out.println();

}

4 of 11

3. Parameters and References, 8 points

The program below produces 4 lines of output. What are they?

public class VerySimplePoint {

 int x;

 int y;

 public VerySimplePoint() {

 x = 2;

 y = 2;

 }

}

public class Mystery {

 public static void main(String[] args) {

 int a = 7;

 int b = 9;

 VerySimplePoint p1 = new VerySimplePoint();

 VerySimplePoint p2 = new VerySimplePoint();

 addToXTwice(a,p1);

 System.out.println(a + " " + b + " " + p1.x + " " + p2.x);

 addToXTwice(b,p2);

 System.out.println(a + " " + b + " " + p1.x + " " + p2.x);

 }

 public static void addToXTwice(int a, VerySimplePoint p1) {

 a = a + a;

 p1.x = a;

 System.out.println(a + " " + p1.x);

 }

}

Line 1: ____________________________

Line 2: ____________________________

Line 3: ____________________________

Line 4: ____________________________

5 of 11

4. Token-Based File Processing, 8 points

Write a static method called printStrings that takes as a parameter a Scanner holding a sequence of

integer/String pairs and that prints to System.out one line of output for each pair with the given String repeated the

given number of times. For example if the Scanner contains the following data:

 6 fun. 3 hello 10 <> 4 wow!

your method should produce the following output:

 fun.fun.fun.fun.fun.fun.

 hellohellohello

 <><><><><><><><><><>

 wow!wow!wow!wow!

Notice that there is one line of output for each integer/String pair. The first line has 6 occurrences of "fun.", the

second line has 3 occurrences of "hello", the third line has 10 occurrences of "<>" and the fourth line has 4

occurrences of "wow!". Notice that there are no extra spaces included in the output. You are to exactly reproduce the

format of this sample output. You may assume that the input values always come in pairs with an integer followed by

a String. If the Scanner is empty (no integer/String pairs), your method should produce no output.

6 of 11

5. Line-Based File Processing, 10 points

Write a static method named printDuplicates that accepts as its parameter a Scanner for an input file containing

a series of lines. Your method should examine each line looking for consecutive occurrences of the same token on the

same line, and print each duplicated token along how many times it appears consecutively. Non-repeated tokens are

not printed. Repetition across multiple lines (such as if a line ends with a given token and the next line starts with the

same token) is not considered in this problem.

For example, if the input file contains the following text (sequences of duplicated tokens are underlined for emphasis):

hello how how are you you you you

I I I am Jack's Jack's smirking smirking smirking smirking smirking revenge

 bow wow wow yippee yippee yo yippee yippee yay yay yay
one fish two fish red fish blue fish
It's the Muppet Show, wakka wakka wakka

Your method would produce the following output for the preceding input file:

how*2 you*4

I*3 Jack's*2 smirking*5
wow*2 yippee*2 yippee*2 yay*3

wakka*3

Your code prints only the repeated tokens; the ones that appear only once in a row are not shown. Your code should

place a single space between each reported duplicate token and should respect the line breaks in the original file. This

is why a blank line appears in the expected output, corresponding to the fourth line of the file that did not contain any

consecutively duplicated tokens. You may assume that each line of the file contains at least 1 token of input.

7 of 11

6. Arrays, 10 points

Write a static method named arraySum that accepts two arrays of real numbers a1 and a2 as parameters and returns a

new array a3 such that each element of a3 at each index i is the sum of the elements at that same index i in a1 and a2.

For example, if a1 stores {4.5, 5.0, 6.6} and a2 stores {1.1, 3.4, 0.5}, your method should return {5.6,

8.4, 7.1}, which is obtained by adding 4.5 + 1.1, 5.0 + 3.4, and 6.6 + 0.5.

If the arrays a1 and a2 are not the same length, the result returned by your method should have as many elements as

the larger of the two arrays. If a given index i is in bounds of a1 but not a2 (or vice versa), your result array's element

at index i should be equal to the value of the element at index i in the longer of a1 or a2. For example, if a1 stores

{1.8, 2.9, 9.4, 5.5} and a2 stores {2.4, 5.0}, your method should return {4.2, 7.9, 9.4, 5.5}.

The table below shows some additional calls to your method and the expected values returned:

Arrays Call and Value Returned
double[] a1 = {4.5, 2.8, 3.4, 0.8};

double[] a2 = {1.4, 8.9, -1.0, 2.3};
arraySum(a1, a2) returns
{5.9, 11.7, 2.4, 3.1}

double[] ax = {2.4, 3.8};

double[] ay = {0.2, 9.2, 4.3, 2.8, 1.4};
arraySum(ax, ay) returns
{2.6, 13.0, 4.3, 2.8, 1.4}

double[] aa = {1.0, 2.0, 3.0};

double[] ab = {4.0, 5.0};
arraySum(aa, ab) returns
{5.0, 7.0, 3.0}

double[] ai = {};

double[] aj = {42.0};
arraySum(ai, aj) returns
{42.0}

For full credit, you should not modify the elements of a1 or a2. You may not use a String to solve this problem.

8 of 11

7. ArrayList, 8 points

Write a static method called reverse3 that takes an ArrayList of integer values as a parameter and that

reverses each successive sequence of three values in the list. For example, suppose that a variable called list

stores the following sequence of values:

[3, 8, 19, 42, 7, 26, 19, -8, 193, 204, 6, -4]

and we make the following call:

 reverse3(list);

Afterwards the list should store the following sequence of values:

[19, 8, 3, 26, 7, 42, 193, -8, 19, -4, 6, 204]

The first sequence of three values (3, 8, 19) has been reversed to be (19, 8, 3). The second sequence of three

values (42, 7, 26) has been reversed to be (26, 7, 42). And so on. If the list has extra values that are not part of

a sequence of three, those values are unchanged. For example, if the list had instead stored:

 [3, 8, 19, 42, 7, 26, 19, -8, 193, 204, 6, -4, 99, 2]

The result would have been:

 [19, 8, 3, 26, 7, 42, 193, -8, 19, -4, 6, 204, 99, 2]

Notice that the values (99, 2) are unchanged in position because they were not part of a sequence of three

values.

9 of 11

8. Critters, 15 points

Write a class called Orca that extends the Critter class. The instances of the Orca class follow a pattern of moving

forward four times, then turning around, then moving back four times and turning around again so that they return to their

original position and direction. Each Orca is always either in moving-mode or in turning-mode. They start out in

moving-mode. While in moving-mode, they try to hop forward if possible until they have hopped four times, at which

point they switch into turning-mode. If it is not possible to hop while in moving-mode, an Orca instead infects whatever

is in front of it. When in turning-mode, the Orca turns left twice and then switches back to moving-mode. Don't worry

about the fact that if the Orca encounters a wall while in moving-mode, it gets stuck trying to infect the wall indefinitely.

The Orca displays itself as "M" while in moving-mode and as "T" while in turning-mode. Its color should be the default

color for critters.

10 of 11

9. Arrays, 14 points

Write a static method named partition that accepts an array of integers a and an integer element value v as its

parameters, and rearranges ("partitions") the array's elements so that all its elements of a that are less than v occur

before all elements that are greater than v. The exact order of the elements is unimportant so long as all elements less

than v appear before all elements greater than v. For example, if your method were passed the following array:

int[] a = {15, 1, 6, 12, -3, 4, 8, -7, 21, 2, 30, -1, 9};

partition(a, 5);

One acceptable ordering of the elements after the call would be: (elements < 5 and > 5 are underlined for emphasis)

{-1, 1, 2, -7, -3, 4, 8, 12, 21, 6, 30, 15, 9}

Hint: Your method will need to rearrange the elements of the array, which will involve swapping various elements

from less desirable indexes to more desirable ones.

You may assume that the array contains no duplicates and does not contain the element value v itself. You may not

use Arrays.sort, Collections.sort, or any other pre-defined sorting algorithm from the Java Class Libraries or

textbook to solve this problem. You also may not use a String to solve this problem.

11 of 11

10. Programming, 10 points

Write a static method called acronym that takes as a parameter a String containing a phrase and that returns an

acronym for the phrase. For example, the following call:

 acronym("self-contained underwater breathing apparatus")

should return "SCUBA". The acronym is formed by combining the capitalized first letters of each word in the phrase.

Words in the phrase will be separated by some combination of dashes and spaces. There might be extra spaces or

dashes at the beginning or end of the phrase. The String will not contain any characters other than dashes, spaces, and

letters, and is guaranteed to contain at least one word. Below are several sample calls.

 Method Call Value Returned

 --- --------------

 acronym(" automatic teller machine ") "ATM"

 acronym("personal identification number") "PIN"

 acronym("computer science") "CS"

 acronym("merry-go-round") "MGR"

 acronym("All my Children") "AMC"

 acronym("Troubled Assets Relief Program") "TARP"

 acronym("--quite-- confusing - punctuation-") "QCP"

 acronym(" loner ") "L"

