CSE 142
Computer Programming I

Sorting

Overview

Sorting defined
Algorithms for sorting
Selection Sort algorithm
Efficiency of Selection Sort

Overview

Sorting defined
Algorithms for sorting
Selection Sort algorithm
Efficiency of Selection Sort

Sorting

The problem: put things in order
Usually smallest to largest: "ascending"
Could also be largest to smallest: "descending"

Lots of applications!
ordering hits in web search engine
preparing lists of output
merging data from multiple sources
to help solve other problems
faster search (allows binary search)
too many to mention!

Sorting: More Formally

Given an array \(b[0], b[1], \ldots, b[n-1] \), reorder entries so that
\(b[0] \leq b[1] \leq \ldots \leq b[n-1] \)

Shorthand for these slides: the notation \(\text{array}[i..k] \)
means all of the elements
\(\text{array}[i], \text{array}[i+1], \ldots, \text{array}[k] \)
Using this notation, the entire array would be:
\(b[0..n-1] \)

P.S.: This is not C syntax!

Sorting Algorithms

Sorting has been intensively studied for decades
Many different ways to do it!
We’ll look at only one algorithm, called
"Selection Sort"
Other algorithms you might hear about in
other courses include Bubble Sort, Insertion Sort, QuickSort, and MergeSort. And that’s
only the beginning!

Sorting Problem

What we want: Data sorted in order
0 \(\ldots \) n
\(b[0] \leq b[1] \leq \ldots \leq b[n-1] \)

Initial conditions
0 \(\ldots \) n
\(b[0] \leq b[1] \leq \ldots \leq b[n-1] \)

unsorted

Q-1
Selection Sort

General situation

\[
\begin{array}{ccc}
0 & k & n \\
b & \text{smallest elements, sorted} & \text{remainder, unsorted}
\end{array}
\]

Strategy of the algorithm:

Grow the blue area, shrink the pink area

- **Step:** Find smallest element \(x \) in \(b[k..n-1] \)
- Swap smallest element with \(b[k] \), then increase \(k \)

Subproblem: Find Smallest

/* Find location of smallest element in \(b[k..n-1] \) */
/* Assumption: \(k < n \) */
/* Returns index of smallest, does not return the smallest value itself */

```c
int min_loc (int b[], int k, int n) {
    int j, pos; /* b[pos] is smallest element */
    pos = k;
    for (j = k + 1; j < n; j = j + 1)
        if (b[j] < b[pos])
            pos = j;
    return pos;
}
```

Code for Selection Sort

/* Sort \(b[0..n-1] \) in non-decreasing order (rearrange elements in \(b \) so that \(b[0] \leq b[1] \leq \ldots \leq b[n-1] \)) */

```c
void sel_sort (int b[], int n) {
    int k, m;
    for (k = 0; k < n - 1; k = k + 1) {
        m = min_loc(b, k, n);
        swap(&b[k], &b[m]);
    }
}
```

Example

<table>
<thead>
<tr>
<th>b</th>
<th>-17</th>
<th>-5</th>
<th>3</th>
<th>6</th>
<th>142</th>
<th>21</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>min_loc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example (cont.)

<table>
<thead>
<tr>
<th>b</th>
<th>-17</th>
<th>-5</th>
<th>3</th>
<th>6</th>
<th>142</th>
<th>21</th>
<th>12</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>min_loc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example (concluded)

| b | -17 | -5 | 3 | 6 | 12 | 21 | 142 | 45 |

Sorting Analysis

How many steps are needed to sort n things?

For each swap, we have to search the remaining array

- length is proportional to original array length \(n \)
- Need about \(n \) search/swap passes

Total number of steps proportional to \(n^2 \)

Conclusion: selection sort is pretty expensive (slow) for large \(n \)

Can We Do Better Than \(n^2 \)?

Sure we can!

Selection, insertion, bubble sorts are all proportional to \(n^2 \)

Other sorts are proportional to \(n \log n \)

- Mergesort, Quicksort, etc.

\(\log n \) is considerably smaller than \(n \), especially as \(n \) gets larger

(remember: linear search’s time is proportional to \(n \);

binary search’s is proportional to \(\log n \))

As the problem size grows, the time to run a \(n^2 \)

sort will grow much faster than an \(n \log n \) one.

Any better than \(n \log n \)?

In general, no. But in special cases, we can do better

Example: Sort exams by score: drop each exam in one of 101 piles; work is proportional to \(n \)

Curious fact: efficiency can be studied and predicted mathematically, without using a computer at all!

Comments about Efficiency

Efficiency means doing things in a way that saves resources

Usually measured by time or memory used

Many small programming details have little or no measurable effect on efficiency

The big differences comes with the right choice of algorithm and/or data structure

Efficiency: Not Always What You Expect!

Myth: I should make everything efficient!

Imagine spending hours optimizing a binary search for an array you search only once. What’s the problem?

Myth: It’s the details that really matter… like using chars to represent small numbers instead of ints!

Imagine you need to send a huge amount of data from your headquarters in Denver to your printer 15 miles away. What’s the FASTEST way?

(From Jon Bentley’s Programming Pearls)
Summary

- Sorting means placing things in order
- Selection sort is one of many algorithms:
 - At each step, finds the smallest remaining value
- Selection sort requires on the order of n^2 steps
 - There are sorting algorithms which are greatly more efficient
 - It’s the algorithm that makes the difference, not the coding details

QOTD: Sorting as you go

- Sometimes arrays grow one element at a time. You could add each element so that the array is always in sorted order. Then you don’t have to stop and sort the array later.
- Example: the array of players in HW5

Write an addToPlayerArray function which inserts the new player in the array, maintaining alphabetical order by player name.

What complication will there be to your search in this array?