```
def min(lst):
```

Given a list lst, Returns the minimum element in lst (or None if there is no minimum).
' '
\# Edge case--lst is empty
if len(lst) $==0$:
return None
\# Typical case--lst is non-empty
$\mathrm{m}=\mathrm{lst}[0]$
for el in lst:
\# keep a running minimum
$m=\min (m, e l)$
return m
def range(lst):

Given a list lst, returns the size of the range of the numbers in lst. For example, if lst is [1, 1, 1], then the range is 1. If lst is [1, 1, 2], then the range is 2 . The range of an empty list is 0 .
\# Edge case--lst is empty
if len(lst) == 0:
return 0
\# Add one so that range of [1] is 1 rather than 0
return max(lst) - func_1(lst) + 1
def histogram(lst):
Given a list lst, returns a list that counts the occurrences of each number in lst. For an element e in lst, the returned list a will store the number of occurrences of e at $a[e-\min (l s t)]$.
''
\# Initialize the histogram. len(ct) is the maximum possible number \# of distinct elements in lst.
ct $=$ []
for i in range(func_3(lst)): ct. append(0)
\# Count occurrences
$m=$ func_1(lst)
for el in lst:
\# Subtract m to guarantee that this is a valid index into the histogram $\operatorname{ct}[e l-m]=\operatorname{ct}[e l-m]+1$
return ct

