Algorithmic complexity:
Speed of algorithms

CSE 140
Winter 2014
University of Washington



How fast does your program run?

Usually, this does not matter
Correctness trumps speed

Computer time is much cheaper than human time

The cost of your program depends on:

— Time to write and verify it
* High cost: salaries

— Time to run it
* Low cost: electricity

An inefficient program may give results faster



Sometimes, speed does matter

* Ridiculously inefficient algorithms

* Very large datasets
Google:
46 billion pages indexed (2011)
3 billion searches per day (2012)

=150,000,000,000,000,000,000 pages searched per
day



Example: Processing pairs

def make pairs(listl, list2):
"""Return a list of pairs.
Each pair is made of corresponding elements of listl and list2.
listl and l1list2 must be of the same length."""

assert make pairs([100, 200, 300], [101, 201, 301]) == [[100, 101],
[200, 201], [300, 301]]

* 2 nested loops vs. 1 loop
* Quadratic vs. linear time



Searching

def search(value, 1l1lst):
"""Return index of wvalue in list 1lst.
The value must be in the list."""

* Any list vs. a sorted list
* Linear vs. logarithmic time



Sorting

def sort(lst):
"""Return a sorted version of the list 1lst.
The input list is not modified."""

assert sort([3, 1, 4, 1, 5, 9, 2, 6, 5]) == [1, 1,
2, 3, 4, 5, 5, 6, 9]

e selection sort vs. quicksort
* 2 nested loops vs. recursive decomposition
* time: quadratic (n?) vs. logarithmic (n log n)



