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How fast does your program run?

Usually, this does not matter
Correctness trumps speed

Computer time is much cheaper than human time

The cost of your program depends on:

— Time to write and verify it
* High cost: salaries

— Time to run it
* Low cost: electricity

An inefficient program may give results faster



Sometimes, speed does matter

* Ridiculously inefficient algorithms

* Very large datasets
Google:
46 billion pages indexed (2011)
3 billion searches per day (2012)

=150,000,000,000,000,000,000 pages searched per
day



Example: Processing pairs

def make pairs(listl, list2):
"""Return a list of pairs.
Each pair is made of corresponding elements of listl and list2.
listl and l1list2 must be of the same length."""

assert make pairs([100, 200, 300], [101, 201, 301]) == [[100, 101],
[200, 201], [300, 301]]

* 2 nested loops vs. 1 loop
* Quadratic vs. linear time



Searching

def search(value, 1l1lst):
"""Return index of wvalue in list 1lst.
The value must be in the list."""

* Any list vs. a sorted list
* Linear vs. logarithmic time



Sorting

def sort(lst):
"""Return a sorted version of the list 1lst.
The input list is not modified."""

assert sort([3, 1, 4, 1, 5, 9, 2, 6, 5]) == [1, 1,
2, 3, 4, 5, 5, 6, 9]

e selection sort vs. quicksort
* 2 nested loops vs. recursive decomposition
* time: quadratic (n?) vs. logarithmic (n log n)



