
Algorithmic complexity:
Speed of algorithms

CSE 140

Winter 2014

University of Washington

1

How fast does your program run?

• Usually, this does not matter

• Correctness trumps speed

• Computer time is much cheaper than human time

• The cost of your program depends on:
– Time to write and verify it

• High cost: salaries

– Time to run it
• Low cost: electricity

• An inefficient program may give results faster

2

Sometimes, speed does matter

• Ridiculously inefficient algorithms

• Very large datasets

Google:

46 billion pages indexed (2011)

3 billion searches per day (2012)

= 150,000,000,000,000,000,000 pages searched per
day

3

Example: Processing pairs

def make_pairs(list1, list2):

 """Return a list of pairs.

 Each pair is made of corresponding elements of list1 and list2.

 list1 and list2 must be of the same length."""

 …

assert make_pairs([100, 200, 300], [101, 201, 301]) == [[100, 101],

[200, 201], [300, 301]]

• 2 nested loops vs. 1 loop

• Quadratic vs. linear time

4

Searching

def search(value, lst):

 """Return index of value in list lst.

 The value must be in the list."""

 …

• Any list vs. a sorted list

• Linear vs. logarithmic time

5

Sorting

def sort(lst):

 """Return a sorted version of the list lst.

 The input list is not modified."""

 …

assert sort([3, 1, 4, 1, 5, 9, 2, 6, 5]) == [1, 1,

2, 3, 4, 5, 5, 6, 9]

• selection sort vs. quicksort

• 2 nested loops vs. recursive decomposition

• time: quadratic (n2) vs. logarithmic (n log n)

6

