Sorting

Ruth Anderson
UW CSE 140
Winter 2014

hamlet

Sorting

= "to be or not to be that is the

question whether tis nobler in the mind to
suffer" .split()

print

print
print

print
print

"hamlet:", hamlet

"sorted(hamlet) :", sorted(hamlet)
"hamlet:", hamlet

"hamlet.sort () :", hamlet.sort()
"hamlet:", hamlet

e Lists are mutable —they can be changed
— including by functions

Customizing the sort order

Goal: sort a list of names by last name

names = ["Isaac Newton'", "Albert Einstein", '"Niels
Bohr", "Marie Curie", "Charles Darwin", "Louis
Pasteur", "Galileo Galilei", "Margaret Mead"]

print '"names:'", names

This does not work:

print "sorted(names) :", sorted(names)
When sorting, how should we compare these names?

"Niels Bohr"
"Charles Darwin"

Sort key

A sort key is a different value that you use to sort a list,
instead of the actual values in the list

def last name(str):
return str.split(" ") [1]

print 'last name ("Isaac Newton"):',
last name ("Isaac Newton")

Two ways to use a sort key:
1. Create a new list containing the sort key, and then sort it
2. Pass a key function to the sorted function

1. Use a sort key to create a new list

Create a different list that contains the sort key, sort it, then extract the relevant part:

names = ["Isaac Newton", "Fred Newton", "Niels Bohr"]
keyed names is a list of [lastname, fullname] lists

keyed names = []

for name in names: —_— 1) Create the new list.
B

keyed names.append([last name (name), name])

Take a look at the list you created, it can now be sorted:

print "keyed names:", keyed names

print "sorted(keyed names) :", sorted(keyed names)
print "sorted(keyed names, reverse = True):"

print sorted(keyed names, reverse = True)

(This works because Python compares two elements that are lists elementwise.)

sorted keyed names = sorted(keyed names, reverse = True) 4 2) Sort the list new list.

sorted names = []

for keyed name in sorted keyed names:

sorted names.append (keyed name[1]) ot 3) Extract the relevant part.

print "sorted names:", sorted names

Digression: Lexicographic Order

Aaron 1,9, 9]
Andrew 2, 1]
Angie 33]
with 1]
withhold 11 1]
withholding 11'1 1
Able

Charlie

baker

delta

2. Use a sort key as the key argument

Supply the key argument to the sorted function or the sort function

def last name(str):
return str.split (" ") [1]
names = ["Isaac Newton", "Fred Newton", "Niels Bohr"]
print "sorted(names, key = last name) :."
print sorted(names, key = last name)

print "sorted(names, key = last name, reverse = True):"
print sorted(names, key = last name, reverse = True)

print sorted(names, key = len)

def last name len (name) :
return len(last name (name))

print sorted(names, key = last name len)

operator.

operator.
operator.
operator.
operator.

operator.

operator.
operator.

operator.

itemgetter is a function
that returns a function

import operator

itemgetter (2,

itemgetter (2,
itemgetter (2,
itemgetter (2,
itemgetter (2,
itemgetter (1,

itemgetter (9,
itemgetter (14,
itemgetter (12,

7, 9, 10)

7, 9, 10) ("dumbstricken")
5, 7, 9) ("homesickness")
7, 9, 10) ("pumpernickel")
3, 6, 7) ("seminaked")

2, 4, 5) ("smirker")

7, 6, 1) ("beatnikism")
13, 5, 1) ("Gedankenexperiment")
10, 9, 5) ("mountebankism")

Using itemgetter

from operator import itemgetter

student score = ('Robert', 8)
itemgetter (0) (student score) = “Robert”
itemgetter (1) (student score) — 8

student scores =
[('Robert', 8), ('Alice', 9), ('Tina', 7)]

e Sort the list by name:
sorted (student scores, key=itemgetter (0))

* Sort the list by score

sorted (student scores, key=itemgetter(l))

Two ways to Import 1temgetter

from operator import itemgetter
student score = ('Robert',6 8)
itemgetter (0) (student score) = “Robert”
itemgetter(l) (student score) — 8

Or

import operator

student score = ('Robert', 8)
operator.itemgetter (0) (student score) = “Robert”
operator.itemgetter (l) (student score) — 38

10

Sorting based on two criteria

Two approaches:

Approach #1: Use an itemgetter with two arguments
Approach #2: Sort twice (most important sort last)

student scores = [('Robert', 8), ('Alice',6 9),
('Tina', 10), ('James', 8)]

Goal: sort based on score;
if there is a tie within score, sort by name

Approach #1:
sorted (student scores, key=itemgetter(1,0))

Approach #2:

sorted by name = sorted(student scores, key=itemgetter (0))
sorted by score = sorted(sorted by name, key=itemgetter(l))

11

Sort on most important criteria LAST

e Sorted by score (ascending), when there is a
tie on score, sort using hame

from operator import itemgetter

student scores = [('Robert', 8), ('Alice', 9), ('Tina', 10),
('James', 8)]

sorted by name = sorted(student_scores, key=itemgetter (0))
>>> sorted by name

[('Alice', 9), ('James', 8), ('Robert', 8), ('Tina', 10)]
sorted by score = sorted(sorted by name, key=itemgetter(l))
>>> sorted by score

[("James', 8), ('Robert', 8), ('Alice', 9), ('Tina', 10)]

12

More sorting based on two criteria

If you want to sort different criteria in different directions, you
must use multiple calls to sort or sorted

student scores = [('Robert', 8), ('Alice', 9), ('Tina', 10),
('James', 8)]

Goal: sort score from highest to lowest; if there is a tie within score,
sort by name alphabetically (= lowest to highest)

sorted by name = sorted(student scores, key=itemgetter (0))
sorted by hi score = sorted(sorted by name,
key=itemgetter (l) , reverse=True)

13

Sorting: strings vs. numbers

e Sorting the powers of 5:

>>> sorted([125, 5, 3125, 625, 25])

[5, 25, 125, 625, 3125]

>>> sorted(["125", "5", "3125", "625", "25"])
['125', '25', '3125', '5', '625']

14

