
Sets

Ruth Anderson

CSE 140

University of Washington

1

Sets

• Mathematical set: a collection of values, without
duplicates or order

• Order does not matter
{ 1, 2, 3 } == { 3, 2, 1 }

• No duplicates
{ 3, 1, 4, 1, 5 } == { 5, 4, 3, 1 }

• For every data structure, ask:
– How to create

– How to query (look up) and perform other operations
• (Can result in a new set, or in some other datatype)

– How to modify

Answer: http://docs.python.org/2/library/stdtypes.html#set

3

2

1

1

4

3

5

2

http://docs.python.org/2/library/stdtypes.html#set
http://docs.python.org/2/library/stdtypes.html#set

Two ways to create a set

1. Direct mathematical syntax:
odd = { 1, 3, 5 }

prime = { 2, 3, 5 }

Cannot express empty set: “{}” means something else

2. Construct from a list:
odd = set([1, 3, 5])

prime = set([2, 3, 5])

empty = set([])

 Python always prints using this syntax above

3

Set operations
odd = { 1, 3, 5 }

prime = { 2, 3, 5 }

• membership Python: in 4 in prime False
• union Python: | odd | prime { 1, 2, 3, 5 }
• intersection Python: & odd & prime { 3, 5 }
• difference \ or - Python: - odd – prime { 1 }

 Think in terms of set operations,
 not in terms of iteration and element operations

– Shorter, clearer, less error-prone, faster

Although we can do iteration over sets:

iterates over items in arbitrary order

for item in myset:

 …

But we cannot index into a set to access a specific element.
4

Modifying a set

• Add one element to a set:
myset.add(newelt)

myset = myset | { newelt }

• Remove one element from a set:
myset.remove(elt) # elt must be in myset or raises err
myset.discard(elt) # never errs
myset = myset - { elt }

What would this do?
myset = myset - elt

• Choose and remove some element from a set:
myset.pop()

5

Practice with sets

z = {5,6,7,8}

y = {1,2,3,"foo",1,5}

k = z & y

j = z | y

m = y – z

z.add(9)

6

List vs. set operations (1)

Find the common elements in both list1 and list2:
out1 = []
for i in list2:
 if i in list1:
 out1 .append(i)

We will learn about list comprehensions later
out1 = [i for i in list2 if i in list1]

Find the common elements in both set1 and set2:
set1 & set2

Much shorter, clearer, easier to write!

7

List vs. set operations (2)

Find the elements in either list1 or list2 (or both) (without duplicates):
out2 = list(list1) # make a copy
for i in list2:
 if i not in list1: # don’t append elements already in out2
 out2.append(i)
OR
out2 = list1+list2
for i in out1: # out1 (from previous example), common
 # elements in both lists
 out2.remove(i) # Remove common elements

Find the elements in either set1 or set2 (or both):
set1 | set2

8

List vs. set operations (3)

Find the elements in either list but not in both:

out3 = []

for i in list1+list2:

 if i not in list1 or i not in list2:

 out3.append(i)

Find the elements in either set but not in both:

set1 ^ set2

9

Not every value may be placed in a set

• Set elements must be immutable values
– int, float, bool, string, tuple
– not: list, set, dictionary

• Goal: only set operations change the set
– after “myset.add(x)”, x in myset True
– y in myset always evaluates to the same value
Both conditions should hold until myset itself is changed

• Mutable elements can violate these goals
list1 = ["a", "b"]

list2 = list1

list3 = ["a", "b"]

myset = { list1 } Hypothetical; actually illegal in Python
list1 in myset True
list3 in myset True
list2.append("c") not modifying myset “directly”
list1 in myset ??? modifying myset “indirectly” would lead to different results
list3 in myset ???

10

