
Python Evaluation Rules

UW CSE 140
http://tinyurl.com/dataprogramming

Michael Ernst and Isaac Reynolds
mernst@cs.washington.edu

February 4, 2014

Contents

1 Introduction 2
1.1 The Structure of a Python Program . 2
1.2 How to Execute a Python Program . 2

2 Literal Expressions 3

3 Operator Expressions 3
3.1 Binary Expressions . 3
3.2 Compound Expressions . 4
3.3 Unary Expressions . 5

4 Variables 6
4.1 Variable Access Expressions . 6
4.2 Variable Assignment Statements . 7

5 If Statements 9
5.1 Rules for Evaluation . 9
5.2 Examples . 10

6 Data structures: Lists, Tuples, Sets, and Dictionaries 12
6.1 Constructor Expressions . 13
6.2 Data Structure Access Expressions . 15
6.3 Data Structure Assignment Statements . 18
6.4 Sequence Slice Access and Assignment Expressions . 20
6.5 del Statements . 22

7 Loop Statements 24
7.1 for Loop Statements . 24
7.2 while Loop Statements . 26
7.3 break Statements . 28
7.4 continue Statements . 29
7.5 Comprehension Expressions . 30

8 Functions 32
8.1 Function Definition Statements . 32
8.2 Variable Access Expressions, Refined . 34
8.3 Variable Assignment Statements . 35
8.4 Function Call Expressions . 38

1

http://tinyurl.com/dataprogramming

1 Introduction

This document presents step-by-step rules for executing a Python program. A skilled Python programmer
uses these rules to reason about the effects of Python code. This document will enable you to program more
efficiently and with less confusion.

We wrote this document as a reaction to the vague English descriptions in many textbooks and websites.
If you have only a fuzzy notion of what Python does, you will struggle to write correct code, debug incorrect
code, and read unfamiliar code. This document might take some effort to understand on first reading, but
overall it will save you time and avoid frustration.

1.1 The Structure of a Python Program

A Python program is a sequence of statements. Python executes this sequence of statements in a specific,
consistent, and predictable order.

A Python statement contains zero or more expressions. A statement typically has a side effect such as
printing output, computing a useful value, or changing which statement is executed next.

A Python expression describes a computation, or operation, performed on data. For example, the arith-
metic expression 2+1 describes the operation of adding 1 to 2. An expression may contain sub-expressions
— the expression 2+1 contains the sub-expressions 2 and 1.

An expression is some text a programmer writes, and a value is Python’s internal representation of a
piece of data. Evaluating an expression computes a Python value. This means that the Python expression
2 is different from the value 2. This document uses typewriter font for statements and expressions and
sans serif font for values.

1.2 How to Execute a Python Program

Python executes a program by executing the program’s statements one by one until there are no more
statements left to execute. In general, Python executes statements from top to bottom.

Python executes a statement by evaluating its expressions to values one by one, then performing some
operation on those values.

Python evaluates an expression by first evaluating its sub-expressions, then performing an operation
on the value. Notice that each sub-expression might have its own sub-sub-expressions, so this process
might repeat several times. However, this process of dividing and evaluating always terminates because the
expressions become smaller at each step until they reach some base expression.

For example, to evaluate 2*10 + 6/3, Python first evaluates 2*10 to the value 20, then evaluates 6/3 to
the value 2, then adds the two to get 22. Note that in order to evaluate one expression, Python evaluates
several smaller expressions (such as 2*10). Furthermore, to evaluate 2*10, Python evaluates the expression
2 to the value 2, and so forth. The value of a literal expression such as 2 is the corresponding value, so this
is where Python stops dividing into sub-expressions.

The remainder of this document gives evaluation rules for Python expressions and statements.
The general approach is rewriting. Given a statement or expression, each individual rule does a tiny bit

of work that simplifies the statement or expression to an equivalent but shorter or simpler version, until
there is no more work to do and you have executed the whole thing. The general idea is to break up an
imposing task into bite-sized pieces. Evaluation of any program proceeds by small, simple steps, and by
understanding these you can understand the execution of the whole program.

Comments and corrections to this document are welcome; send them to mernst@cs.washington.edu.

2

2 Literal Expressions

A literal expression evaluates to the value it represents. Here are some examples of literal expressions and
the values to which they evaluate:

17 ⇒ 17
’this is some text’ ⇒ “this is some text”
8.125 ⇒ 8.125
True ⇒ True

This document uses ⇒ to show an expression (on the left) and the value to which it evaluates (on the
right).

3 Operator Expressions

3.1 Binary Expressions

A binary expression consists of a binary operator applied to two operand expressions. A binary operator is
an operator that takes two arguments (for example, + or /). Here are some examples of binary arithmetic
expressions, each of which evaluates to a number:

2 * 5 ⇒ 10
14 + 8 ⇒ 22

Here are some examples of binary Boolean expressions, each of which evaluates to a Boolean (True or
False):

6 == 7 ⇒ False
0 < 5 ⇒ True
True and False ⇒ False

Some expressions don’t evaluate to numbers or Booleans. For instance, applying the + operator to two
string values evaluates to the concatenation of the two strings:

’have a ’ + ’very good day’ ⇒ “have a very good day”

In general, a binary expression has the form:

EXPR BIN OP EXPR

3.1.1 Rules for Evaluation

To evaluate a binary expression to a value,

1. Evaluate the left operand (which is an expression) to a value and replace that operand expression with
that value.

2. Evaluate the right operand (which is an expression) to a value and replace that operand expression
with that value.

3. Apply BIN OP to the two resultant values, obtaining the value of the binary expression. Replace the
entire binary expression with this value.

3.1.2 Examples

Below are some examples of evaluating binary expressions. Each example starts with a binary expression
and shows each step of the evaluation, ending with the value to which the binary expression evaluates. The
underlined part of each expression is the part that is evaluated next.

3

Remember that expressions are in typewriter font and values are in sans serif font.

1. 2 * 5

2 * 5

2 * 5
10

2. 14 + 8

14 + 8

14 + 8
22

3. True and False

True and False

True and False
False

4. ’have a ’ + ’very good day’

“have a ” + ’very good day’

“have a ” + “very good day”
“have a very good day”

3.2 Compound Expressions

When at least one of the operands is itself an expression (as in 2 * 5 + 1), the expression is a compound
expression. Python follows the standard mathematical order of operations, so 2 * 5 + 1 is equivalent to (2

* 5) + 1. Here are some examples of compound expressions:

2 * 5 + 1 ⇒ 11
2 + 5 - 1 ⇒ 6
4 * 6 / 8 ⇒ 3
True and not False ⇒ True

You can use parentheses to override Python’s order of operations, or just for clarity. A parenthetical
expression has the form:

(EXPR)

A parenthetical expression evaluates to the same value as the enclosed subexpression, EXPR , does. For
example, (22) evaluates to the same thing 22 does, namely 22. As another example,

2 * (5 + 1) ⇒ 12

3.2.1 Rules for Evaluation

To evaluate a compound expression to a value,

1. Use order of operations to identify the main operator (the last operator that you’ll apply). For example,
the main operator in 2 * 5 + 1 is +, so 2 * 5 + 1 is an addition expression.

2. Identify the operands to the main operator. Then evaluate this expression (the main operator and its
two operands) as you would evaluate a binary expression.

4

3.2.2 Examples

Below are examples of evaluating compound expressions.

1. 3 * 6 + 7

3 * 6 + 7

3 * 6 + 7

18 + 7

18 + 7
25

This example contains some extra underlining to emphasize the following. To evaluate 3 * 6 + 7, it
is necessary to first evaluate its left-hand side, 3 * 6. To evalate 3 * 6, it is necessary to first evaluate
its left-hand side, 3.

2. 6 + 7 + 8

6 + 7 + 8

6 + 7 + 8

13 + 8

13 + 8
21

To simplify this document, from now on we will sometimes elide some steps if they are obvious. For
instance, the following example goes straight from 6 < 0 to False.

3. 6 < 0 or 6 > 10

False or 6 > 10

False or False
False

3.3 Unary Expressions

A unary operator operates on a single value. In general, a unary expression has the form:

UN OP EXPR

Two common unary operators are not and -. The not operator negates a Boolean value; for example, not
False evaluates to True. Used as a unary operator, the - operator negates a numerical value; for example,
-(2 * 5) evaluates to -10.

3.3.1 Rules for Evaluation

To evaluate a unary expression to a value,

1. Evaluate EXPR to a value and replace EXPR with that value.

2. Apply UN OP to the value and replace the entire expression with the new value.

3.3.2 Examples

Below are examples of evaluating unary expressions.

1. -(12 + 4)

-(16)
-16
-16

5

2. -(1-2)

-(-1)
- -1
1

3. 1 + -3

1 + -3
1 + -3
-2

4. not True

not True
False

4 Variables

Think of a variable as a container. A variable stores a value so that you can reuse it later in your program.
This reduces redundancy, improves performance, and makes your code more readable. In order to use a
variable, you first store a value in the variable by assigning the variable to this value. Later, you access that
variable, which looks up the value you assigned to it. It is an error to access a variable that has not yet been
assigned. You can reassign a variable — that is, give it a new value — any number of times.

Note that Python’s concept of a variable is different from the mathematical concept of a variable. In math,
a variable’s value is fixed and determined by a mathematical relation. In Python, a variable is assigned a
specific value at a specific point in time, and it can be reassigned to a different value later during a program’s
execution.

Python stores variables and their values in a structure called a frame. A frame contains a set of bindings.
A binding is a relationship between a variable and its value. When a program assigns a variable, Python
adds a binding for that variable to the frame (or updates its value if the variable already exists). When a
program accesses a variable, Python uses the frame to find a binding for that variable.

Below is an illustration of a Python frame with bindings for 4 variables

For now, this document will consider simple variable assignments and accesses. For a program with func-
tions and function calls, Section 8 defines more complete procedures for variable assignments and accesses.

4.1 Variable Access Expressions

Variable access expressions let you use the value of a variable you’ve assigned. Suppose that the frame is
the one illustrated above, where a variable with the name x is assigned the value 12. Then the expression x

evaluates to the value 12. Here are some examples of variable access expressions:

answer ⇒ 42
(answer + 2) / 2 ⇒ 22

6

In general, a variable access expression has the form:

VAR EXPR

For now, VAR EXPR is a variable name. Section 6.2 generalizes this assumption, enabling accessing of
data structures, as in the expression mylist[22].

4.1.1 Rules for Evaluation

To evaluate a variable access expression to a value, search the frame for a binding from VAR EXPR to a value.
If such a binding exists, replace the access expression with that variable’s value. Otherwise raise an error,
because the variable is not defined.

Later, Section 8 introduces Python functions. When accessing variables in the body of a function, use
the refined rules for evaluation in Section 8.2.

4.1.2 Examples

Below are examples of evaluating variable access expressions. Each example’s first line is the variable access
expression, and the second is the value to which that expression evaluates. The examples are evaluated in
the context of the frame presented above:

1. pi

3.14

2. greeting

“hello world”

3. o

ERROR. The variable o is not defined.

4. fermat

True

4.2 Variable Assignment Statements

An assignment statement creates a variable and sets its value, or changes the value of an existing variable.
Here are some examples of assignments:

x = 18

y = x + 1

y = y * 2

In general, an assignment statement has the form:

VAR EXPR = EXPR

4.2.1 Rules for Evaluation

To execute an assignment statement,

1. Evaluate EXPR to a value and replace EXPR with that value.

2. If the variable already exists in the frame, change its binding so that it now refers to the value from
the previous step. Otherwise, create a new variable in the current frame and bind it to the value from
the previous step.

7

Note that an assignment statement is treated differently from expressions. For most expressions (such as
x + 18), both of the subexpressions are evaluated to a value, then a math operation is performed. For an
assignment, the right-hand side is evaluated to a value, but the left-hand side is treated as a name rather
than evaluated.

The left-hand side can be more complex than simply a name. Section 6 will show how to evaluate an
assignment such as mylist[22] = EXPR .

When assigning variables in the body of a function, use the refined rules for evaluation in Section 8.3.

4.2.2 Examples

Below are examples of executing variable assignment statements. Each example is executed in the context
of this frame, unaffected by previous examples:

Each example shows the final frame.

1. var = 18

Binds new variable var to 18.

2. x = 18

Re-binds x to 18.

3. x = i

Evaluates i to ”hello world”, then re-binds x to that value.

8

4. x = x + 1

Evaluates x + 1 to 13, then re-binds x to that value.

5 If Statements

An if statement lets you execute code only in certain cases (for example, only if a particular variable is less
than 0). For example, here’s an if statement that computes the absolute value of a variable x.

x is some number

if x >= 0:

y = x

else:

y = -x

y is |x|

An if statement consists of a series of if, elif, and else clauses. Every clause (except else) consists
of a condition (a Boolean expression) and a body (a sequence of statements). In general, an if statement
has the form:

if BOOL EXPR :

BODY STATEMENTS

elif BOOL EXPR :

BODY STATEMENTS

elif BOOL EXPR :

BODY STATEMENTS
...else:

BODY STATEMENTS

An if statement always has exactly one leading if clause, zero or more elif clauses that follow it, and
zero or one else clause at the end.

5.1 Rules for Evaluation

In general, Python evaluates the clauses’ conditions in order until one evaluates to True, and then executes
only the statements in that clause (and not in any later clause, even if a later clause’s condition is also true).
To execute an if statement,

9

1. If an else clause exists, replace it with an elif True clause.

2. For each clause, from top to bottom, do the following:

(a) Evaluate the current clause’s condition to a Boolean value (that is, True or False) and re-
place the condition with that value. If the condition evaluates to a non-Boolean value, con-
vert the value to a Boolean value (see http://docs.python.org/2/library/stdtypes.html#

truth-value-testing).

(b) Choose one of the following:

If the condition evaluates to True Execute the statements inside this clause, then end exe-
cution of the if statement. Ignore all subsequent clauses.

If the condition evaluates to False Ignore this clause and continue to the next clause. If there
is no remaining clause, end execution of the if statement.

5.2 Examples

Below are examples of executing if statements. Each example shows an if statement and a timeline that
shows how Python evaluates that if statement, and ends by showing the body statements that Python will
execute. The examples are evaluated in the context of the following frame.

Each example is executed in the context of this frame, unaffected by previous examples:

1. if y:

BODY STATEMENTS

⇓
if True:
BODY STATEMENTS

The first clause is executed, because y evaluates to True.

2. if b:

BODY STATEMENTS

⇓
(Nothing)

No clause is executed, because k evaluates to False.

3. if not b:

BODY STATEMENTS

else:

BODY STATEMENTS

⇓
if not b:

10

http://docs.python.org/2/library/stdtypes.html#truth-value-testing
http://docs.python.org/2/library/stdtypes.html#truth-value-testing

BODY STATEMENTS

elif True:

BODY STATEMENTS

⇓
if True:
BODY STATEMENTS

elif True:

BODY STATEMENTS

The first clause is executed because not b evaluates to True

4. if b:

BODY STATEMENTS

else:

BODY STATEMENTS

⇓
if b:

BODY STATEMENTS

elif True:

BODY STATEMENTS

⇓
if False:
BODY STATEMENTS

elif True:

BODY STATEMENTS

⇓
if False:
BODY STATEMENTS

elif True:
BODY STATEMENTS

The second clause is executed because b evaluates to False.

5. if x < 0:

BODY STATEMENTS

elif x == 0:

BODY STATEMENTS

elif x > 0:

BODY STATEMENTS

⇓
if False:
BODY STATEMENTS

elif x == 0:

BODY STATEMENTS

elif x > 0:

BODY STATEMENTS

⇓
if False:
BODY STATEMENTS

elif False:
BODY STATEMENTS

elif x > 0:

BODY STATEMENTS

⇓

11

if False:
BODY STATEMENTS

elif False:
BODY STATEMENTS

elif True:
BODY STATEMENTS

The third clause is executed because x < 0 evaluates to False, x == 0 evaluates to False, and x >

0 is True.

6. if x > 0:

BODY STATEMENTS

if x == 12:

BODY STATEMENTS

else:

BODY STATEMENTS

⇓
if x > 0:

BODY STATEMENTS

if x == 12:

BODY STATEMENTS

elif True:

BODY STATEMENTS

⇓
if True:
BODY STATEMENTS

if x == 12:

BODY STATEMENTS

elif True:

BODY STATEMENTS

The first clause is executed because x > 0 evaluates to True.

6 Data structures: Lists, Tuples, Sets, and Dictionaries

So far, each value we have seen is a single datum, such as an integer, decimal number, or Boolean. Python
also supports compound values, or data structures. A data structure contains multiple values. Examples
include strings, lists, tuples, sets, and dictionaries.

Types of data structures

A string is a list of characters. It is used to represent text. Strings also have a corresponding literal
constructor (such as "a string").

A tuple contains any number of elements (but usually only two or three). Some functions return tuples
when it is convenient to return a pair of values instead of just one. Tuples are immutable, which means they
cannot be changed after they’re created. The values in a tuple need not be of the same type, but the values
are related — for instance, a tuple might contain a string that represents a word and the number of times
that word appears in a particular text file.

Here is an example of a 2-tuple whose elements are a word and the number of times that word appears

in a text file:
tuple

the 1112 .

A list is an ordered sequence of elements. A list generally contains many elements of the same type. Lists
are used when order is important (for instance, sorting) or when it is necessary to keep multiple instances

12

of a particular element. Once you have created a list, you can change, add, and remove elements.

Here is an example of a list of words in alphabetical order:
list

“fun” “is” “programming” “Python” .

Strings, tuples, and lists are all sequences. A sequence stores elements in a fixed order by giving each
element a unique integer index in the interval [0, n-1], where n is the length of the sequence. The first
element has index 0, and the last has index n-1. You can access a particular element in a sequence by using
that element’s index; for example, the expression mylist[0] evaluates to the first element in the list mylist.

A set is an unordered collection of unique elements. Python ensures uniqueness for you — adding to the
set an element that is already in the set does nothing. It is fast to determine whether a particular element
is in the set, even for a large set.

Here’s an example of a set that contains the names several popular computer operating systems:
set�� ��“Windows” “Mac OS” “Linux” .

A dictionary stores a set of pairs called key-value pairs. If a dictionary contains a particular key-value
pair, then we say the key “maps to” the value. Given a key, a dictionary can return the value to which
that key maps (not the reverse, however). A dictionary is used to associate two pieces of data (for example,
the number of times a given word appears in a text file could be represented with a word as a key and the
number of occurrences as a value).

Here’s an example of a dictionary that contains a set of mappings from a word to the number of times
that word appears in a text file. For any given word, you can ask this dictionary the number of times the

word appears:
dict�� ��“student”→4 “programmer”→23 “fun”→5000 “arachnid”→23 .

Visualizing data structures
A list is not so much a sequence of elements as it is a sequence of references to elements. For example, here’s
how you would draw a list containing the elements “a”, “b”, “c”, and “d”:

A list is similar to a frame. In a frame (list), a variable (index) is bound to a value (element), and you
can retrieve the value (element) by using the variable (index). You can see that this list has four references,
each of which points to one of the elements in a list. And, because this is a list, each reference has an integer
index (0, 1, 2, or 3). You can use the index to access or assign a particular reference in the list.

For brevity, this document uses syntax like
list

“a” “b” “c” “d” to represent the list above in text.

6.1 Constructor Expressions

A constructor expression creates a new set, list, tuple, or dictionary. Here are some constructor expressions:

13

[1, 2, 3] ⇒ A list with elements 1, 2, and 3, in that order:

{1, 2} ⇒ A set with elements 1 and 2:
set�� ��1 2 or equivalently

set�� ��2 1

{’a’:1, ’b’:2} ⇒ A dictionary in which “a” maps to 1 and “b” maps to 2:
dict�� ��“a”→1 “b”→2

or equivalently
dict�� ��“b”→2 “a”→1

(’hello’, 5) ⇒ A tuple with elements “hello” and 5, in that order:
tuple

“hello” 5

In general, a constructor expression has the form:

List [EXPR , EXPR , ..., EXPR]

Set {EXPR , EXPR , ..., EXPR }

Tuple (EXPR , EXPR , ..., EXPR)

Dictionary {KEY EXPR :VAL EXPR , ..., KEY EXPR :VAL EXPR }

A string constructor is a string literal such as "Hello world".

6.1.1 Rules for Evaluation

To evaluate a constructor expression to a value, use these rules.

Lists, Sets, and Tuples

1. From left to right, for each expression EXPR in the comma-separated list, evaluate EXPR to a value and
replace EXPR with that value.

2. Replace the constructor expression with a list, set, or tuple value containing exactly the values from
the previous step. Retain order for a list or tuple. Remove duplicate elements for a set.

Dictionaries

1. For each expression KEY EXPR :VAL EXPR in the comma-separated list, from left to right, do the follow-
ing:

(a) Evaluate VAL EXPR to a value and replace VAL EXPR with that value.

(b) Evaluate KEY EXPR to a value and replace KEY EXPR with that value.

2. Replace the constructor expression with a dictionary containing exactly the mappings from the previous
step. If there are multiple mappings for a particular key, use the last (rightmost) mapping in the
constructor expression.

6.1.2 Examples

Below are examples of evaluating constructor expressions. Each example contains a constructor and a
description of the data structure the constructor creates.

1. [0, 1, 0]

Creates a new list that contains the values 0, 1, and 0 at the indices 0, 1, and 2, respectively:
list

0 1 0

14

2. []

Creates a new, empty list:
list

3. (3.14159, ’pi’)

Creates a new two-tuple with the values 3.14159 and “pi” at the indices 0 and 1, respectively:
tuple

3.14159 “pi”

4. (12,)

Creates a new 1-tuple with the value 12 at index 0:
tuple

12 . Note the trailing comma, which makes

Python interpret the value inside the parentheses as a tuple rather than a parenthetical expression (as
discussed in Section 3.2). A 1-tuple isn’t very useful (you may as well just use a single value), so you
should avoid using them.

5. ()

Creates a new, empty tuple:
tuple

. It’s rarely useful to create a tuple with no elements.

6. {’a’:1, ’b’:2, ’c’:3}

Creates a new dictionary in which the key “a” maps to the value 1, “b” maps to 2, and “c” maps to

3:
dict�� ��“a”→2 “b”→2 “c”→3

7. {’a’:1, ’a’:0, ’b’:2, ’a’:3}

Creates a new dictionary in which the key “b” maps to the value 2 and “a” maps to 3. Note that the

rightmost mapping for “a” overwrites all previous mappings for that key:
dict�� ��“b”→2 “a”→3

8. {’a’:1, ’b’:1}

Creates a new dictionary in which “a” and “b” both map to 1. Note that although keys in a dictionary

must be unique, the values need not be:
dict�� ��“a”→1 “b”→1

9. {}

Creates a new, empty dictionary:
dict�� ��

10. {0, 1, 2, 3}

Creates a new set that contains the values 0, 1, 2, and 3:
set�� ��0 1 2 3

11. {0, 1, 1, ’hello’}

Creates a new set that contains the values 0, 1, and “hello”:
set�� ��0 1 “hello”

12. set()

Creates a new, empty set:
set�� ��. The expression {} creates an empty dictionary, not an empty set.

6.2 Data Structure Access Expressions

Here are some examples of access expressions (accessing an element of a data structure), the following
variables are defined:

15

lst is
list

1 2 3

dict is
dict�� ��“a”→1 “b”→2

lst[0] ⇒ 1
lst[1] ⇒ 2
lst[-1] ⇒ 3
lst[-2] ⇒ 2
dict[’a’] ⇒ 1

.
Sequences and dictionaries all provide methods for retrieving specific values from the structure. A

dictionary access takes a key; the dictionary access expression evaluates to the value associated with that
key. A sequence access takes an index; the sequence access expression evaluates to the element at that index.
The following sections describe how to evaluate access expressions. An access expression has the general
form:

EXPR [INDEX EXPR]

Note that sets don’t provide a way to access specific elements. If, in your code, you need to access a
particular element in a set, then consider using a different data structure.

6.2.1 Rules for Evaluation

To evaluate EXPR [INDEX EXPR] to a value
This expression returns a single value in the data structure given by EXPR .

1. Evaluate EXPR to a value and replace EXPR with that value.

2. Evaluate INDEX EXPR to a value and replace INDEX EXPR with that value.

3. If EXPR evaluates to something other than a sequence or dictionary, then raise an error.

4. If EXPR is a sequence If INDEX EXPR is not an integer on the interval [−n, n− 1] (inclusive, where
n is the length of the sequence), then this access fails.

If INDEX EXPR is negative, replace INDEX EXPR value with the result of len(EXPR) - |INDEX EXPR |.
(Note that accessing index -1 is equivalent to accessing the last element in the sequence.)

Replace the access expression with the value in the sequence at that index. Sequences are zero-
indexed, so the first value in the sequence is at index 0.

If EXPR is a dictionary The expression succeeds only if INDEX EXPR is a key in the dictionary. Re-
place the entire access expression with the value to which the key maps.

6.2.2 Examples

Below are examples of evaluating access expressions. Each example contains an access expression and the
value to which that access evaluates.

Each example is executed in the context of this frame, unaffected by previous examples:

• mylist is
list

0 5 3 4

• mydict is
dict�� ��“a”→1 “b”→2 “c”→“a”

16

• mytuple is
tuple

“hello” 5

1. mylist[0]
list

0 5 3 4 [0]

list

0 5 3 4 [0]

0

2. mylist[4]

ERROR. No index 4.

3. mylist[3]

4

4. mylist[-1]
list

0 5 3 4 [-1]

list

0 5 3 4 [len(mylist)-1]

list

0 5 3 4 [4-1]

list

0 5 3 4 [3]

4

5. mylist[0 - 3]
list

0 5 3 4 [0 - 3]

list

0 5 3 4 [-3]

list

0 5 3 4 [len(mylist)-3]

list

0 5 3 4 [4-3]

list

0 5 3 4 [1]

5

6. mydict[’a’]
dict�� ��“a”→1 “b”→2 “c”→“a” [’a’]

dict�� ��“a”→1 “b”→2 “c”→“a” [“a”]

1

7. mydict[mydict[’c’]]

mydict[mydict[“c”]]
mydict[“a”]
1

We skipped evaluating mydict to
dict�� ��“a”→1 “b”→2 “c”→“a” in this example, for brevity.

17

8. mydict[(12, 13)]

ERROR. The value
tuple

12 13 is not a key in the dictionary.

9. mytuple[0]
tuple

“hello” 5 [0]

tuple

“hello” 5 [0]

“hello”

10. mytuple[1]

5

11. mytuple[-1]
tuple

“hello” 5 [-1]

tuple

“hello” 5 [-1]

tuple

“hello” 5 [len(mytuple)-1]

tuple

“hello” 5 [2-1]

mytuple[1]
5

6.3 Data Structure Assignment Statements

In the same way that sequences and dictionaries provide a way to access individual elements, they also
provide a way to reassign individual elements. This lets you change the elements of the structure. Here are
some examples of reassigning an element of a data structure:

lst is
list

1 2 3

dict is
dict�� ��“a”→1 “b”→2

lst[0] = 17 after this, lst is
list

17 2 3

lst[-1] = 18 after this, lst is
list

1 2 18

dict[’b’] = 12 after this, dict is
dict�� ��“a”→1 “b”→12

In general, an element assignment statement has the form:

DS EXPR [EXPR] = ASSIGN EXPR

Element assignments are very similar to variable assignments. There is an l-expression (on the left of
the assignment operator) and an r-expression (on the right). The l-expression is not evaluated to a value;
rather, it identifies a particular reference or binding in the structure. The assignment makes that reference
point to the value to which r-expression evaluates.

Tuples and sets don’t provide a way to reassign specific values. It isn’t surprising that sets don’t support
this operation, because sets don’t even provide a way to access specific values. Tuples, on the other hand,
do not support this operation because they are immutable: once created, they cannot change.

18

6.3.1 Rules for Evaluation

Assigning a single element makes that particular reference point to a different value. To execute an element
assignment statement,

1. Evaluate the r-expression to a value and replace the r-expression with that value.

2. Evaluate the l-expression to identify a particular reference in the data structure. When accessing a
single index in a list, this statement will fail if the index is not in the list. However, when accessing
a key in a dictionary, if the key is not in the dictionary already then Python will add it and the
l-expression will identify a reference for this new key.

3. Change the reference so that it points to the value given by the r-expression.

6.3.2 Examples

Below are examples of executing assignment statements. Each example contains an assignment statement,
some intermediate steps of executing the statement shown underneath, and the final value of the affected
data structure.

Each example is executed in the context of this frame, unaffected by previous examples:

• lst is
list

1 2 3

• dict is
dict�� ��“a”→1 “b”→2

• t is
tuple

“hello” 5

1. lst[0] = 17

lst[0] = 17
list

1 2 3 [0] = 17

list

1 2 3 [0] = 17

Now, lst ⇒
list

17 2 3 .

Note that in this example we did not evaluate the l-value lst[0] to a value; rather, we evaluated the
parts and then used them to assign one of the slots of lst.

2. dict[lst[0]] = ’c’

dict[lst[0]] = “c”
dict�� ��“a”→1 “b”→2 [lst[0]] = “c”

dict�� ��“a”→1 “b”→2 [1] = “c”

Now, dict ⇒
dict�� ��“a”→1 “b”→2 1→“c”

3. dict[’a’] = lst[1]
...
dict�� ��“a”→1 “b”→2 [“a”] = 2

Now, dict ⇒
dict�� ��“a”→2 “b”→2 .

19

4. t[1] = 6

ERROR: ‘tuple’ object does not support item assignment.
(That is Python’s way of saying that t’s value is immutable.)

5. dict[’a’] = lst

Now, dict ⇒

dict�
�

�
“a”→

list

1 2 3 “b”→2 where
list

1 2 3 is the same list value as lst has

6.4 Sequence Slice Access and Assignment Expressions

Just as a list access evaluates to a single element of the list, a slice operation evaluates to multiple elements
of the list — that is, a subsequence. You can also assign to a slice, which modifies the original sequence by
adding or replacing a sequence of elements. Here are some examples of slice accesses and assignments.

lst is
list

1 2 3

lst[0:2] ⇒
list

1 2

lst[0:2] = [’a’, ’b’, ’c’] after this, lst is
list

“a” “b” “c” 3

In general, a list slice access expression has the form:

EXPR [INDEX EXPR 1 :INDEX EXPR 2]

In general, a list slice assignment expression has the form:

DS EXPR [INDEX EXPR 1 :INDEX EXPR 2] = ASSIGN EXPR

The rules for evaluating a slice operation have many special cases, which makes debugging slices very
difficult. For this reason, you should avoid using slices for anything but the most predictable operations.

6.4.1 Rules for Evaluation

To evaluate EXPR [INDEX EXPR 1 :INDEX EXPR 2] to a value

1. Evaluate EXPR to a value and replace EXPR with that value.

2. If the expression has any of the following forms, transform it as described below. The following rules
make it easy to select the first or last n elements of the sequence.

EXPR [:INDEX EXPR 2] becomes EXPR [0:INDEX EXPR 2]

EXPR [INDEX EXPR 1 :] becomes EXPR [INDEX EXPR 1 :len(EXPR)]

EXPR [:] becomes EXPR [0:len(EXPR)]

3. Evaluate INDEX EXPR 1 to a value and replace the expression with that value. Then do the same for
INDEX EXPR 2 .

4. If either index is less than −n, replace it with −n. If either index is greater than n, replace it with n.

5. If INDEX EXPR 1 is negative, replace it with the result of len(EXPR) - |INDEX EXPR 1 |. Then do the
same for INDEX EXPR 2 . At this point, both indices should be on the interval [0, n] (note that n is a
valid index in a slice, but not in an access to a single element).

6. Raise an error if EXPR is not a sequence.

20

7. Let i be the first index value, and let j be the second. Create a list of indices containing every integer
x such that i ≤ x < j. (For example, if i is 2 and j is 4, then this list will contain 2 and 3.) Note that
it is possible for this list to be empty (for instance, if j ≤ i).

8. For each x in this list of indices, replace x with the value in the original sequence at index x. Replace
the slice access with this new list. It is important to note that the slice returns a new list, so reassigning
elements of the slice does not affect the original list.

Reassigning a slice first removes that slice, then inserts a new sequence of references starting at the lowest
index of the slice.

To execute DS EXPR [INDEX EXPR 1 :INDEX EXPR 2] = ASSIGN EXPR

1. Evaluate the r-expression ASSIGN EXPR to a value and replace ASSIGN EXPR by that value.

2. Evaluate the l-expression to identify a sequence of l-references in the data structure.

3. Raise an error if (a) DS EXPR is not a sequence, or (b) the r-expression is not another data structure.

4. Remove the specified slice from the original sequence (if the slice is empty, don’t remove anything).

5. Create a new list containing the elements of ASSIGN EXPR in iterator order.

6. Insert, starting at the lowest index in the slice, the sequence of references in the list from the previous
step.

6.4.2 Examples

In these examples, mylist is
list

0 5 3 4 .

1. mylist[0:3]

indices 0, 1, and 2
list

0 5 3

2. mylist[-3:0]

mylist[1:0]
no indices
list

3. mylist[-100:100]

mylist[-4:4]
mylist[0:4]
indices 0, 1, 2, and 3
list

0 5 3 4

4. mylist[1:]

mylist[1:len(mylist)]
mylist[1:4]
indices 1, 2, and 3
list

5 3 4

21

5. mylist[-3:]

mylist[-3:len(mylist)]
mylist[-3:4]
mylist[1:4]
indices 1, 2, and 3
list

5 3 4

6. mylist[:]

mylist[0:len(mylist)]
mylist[0:4]
indices 0, 1, 2, and 3
list

0 5 4 3

7. mylist[0:3] = {’hello’, ’there’}

indices to replace: 0, 1, and 2

list to insert:
list

“hello” “there”

list

“hello” “there” 4

8. mylist[:1] = [’a’, ’b’]

mylist[0:1] = [’a’, ’b’]

indices to replace: 0

list to insert:
list

“a” “b”

list

“a” “b” 5 3 4

9. mylist[:] = [’b’, ’c’]

mylist[0:len(mylist)] = [’b’, ’c’]

mylist[0:4] = [’b’, ’c’]

indices to replace: 0, 1, 2, and 3

list to insert:
list

“b” “c”

list

“b” “c”

6.5 del Statements

The del keyword removes elements from lists and dictionaries. Here are some example statements that use
the del keyword:

lst = [1, 2, 3, 4]

d = ’a’:1, ’b’:2

del lst[0] # lst is [2, 3, 4]

del lst[0:2] # lst is [3, 4]

del d[’a’] # d is {’b’:2}
In general, a del statement has the form:

del ACCESS EXPR

del ACCESS EXPR , ACCESS EXPR

22

6.5.1 Rules for Evaluation

To execute del ACCESS EXPR

1. Perform a data structure access on ACCESS EXPR . The del statement fails if the access is not to a list
or dictionary.

2. Choose one of the following:

If DS EXPR is a list The access refers to particular element (or slice) of the list. Remove this element
(slice) from the list.

If DS EXPR is a dictionary The access refers to a key-value mapping in the dictionary. Remove this
binding from the dictionary.

To execute del ACCESS EXPR , ACCESS EXPR , ...

This statement lets you delete several items in a single line of code. Convert it into a sequence of single-
element del statements.

6.5.2 Examples

Below are examples of executing del statements. Each example contains a del statement and the final value
of the affected data structure(s). In the following examples, the following variables are defined.

Each example starts with these variables defined, unaffected by previous examples.

• lst4 is
list

0 1 2 3

• dict is
dict�� ��“a”→1 “b”→2

1. del lst4[0]
list

1 2 3

2. del lst4[-1]
list

0 1 2

3. del lst4[:]
list

4. del lst4[0:2]
list

2 3

5. del dict[’a’]
dict�� ��“b”→2

6. del dict[’c’]

ERROR. KeyError (’c’ is not a key in dict)

7. del dict[’a’], dict[’c’]

First deletes dict[’a’], then throws an error on dict[’c’]. At the end, dict is
dict�� ��“b”→2

8. del lst4[0], dict’b’

lst4 is
list

2 3 and dict is
dict�� ��“a”→1

23

7 Loop Statements

7.1 for Loop Statements

A for loop executes its body multiple times. The for loop iterates over a sequence such as a list or string,
and executes the body once for each element in the sequence. A for loop also defines a loop variable. On
each iteration, the loop variable is assigned to the next sequence element. Here is an example of a for loop:

for value in [1, 2, 6]:

print value + 1

This code prints:

2

3

7

In general, a for loop has the form:

for LOOP VAR in DS EXPR :

BODY STATEMENTS

7.1.1 Rules for Evaluation

We give two rules for evaluating for loop: a control-oriented version, and a rewriting version. They produce
identical results, and you can use whichever one you prefer.

To execute a

1. Evaluate DS EXPR to a value and replace the expression with that value.

2. Assign the LOOP VAR to the first value in the sequence. If the sequence is empty (contains no elements),
exit the loop.

3. Execute the statements in the body of the loop. If you encounter a break statement, immediately exit
the loop. If you encounter a continue statement, immediately continue to the next step. For more
information, see Section 7.3 on the break statement and Section 7.4 on the continue statement.

4. Reassign LOOP VAR to the next value in the sequence, then repeat the previous step. If there is no
next element, exit the loop. For lists, the next element is the element at the next index. For sets and
dictionaries, the order is undefined, so the next element can be any of the remaining elements.

You can also evaluate a loop by rewriting it. Rewriting a loop is too cumbersome to use regularly, but
it’s unambiguous and therefore can yield insight. To rewrite a for loop,

1. Evaluate the DS EXPR to a value.

2. Write an assignment to the loop variable for each element in DS EXPR (if the data structure is a sequence
such as a list, make sure the assignments are in the same order as in the list). For example, if the
sequence had four elements, you would write four assignments.

3. Write a copy of the loop’s body after each assignment.

4. Execute the resultant statements. If you encounter a break statement, immediately skip to the end of
the loop statements. If you encounter a continue statement, immediately skip to the next assignment
of the loop variable LOOP VAR . For more information, see Section 7.3 on the break statement and
Section 7.4 on the continue statement.

24

7.1.2 Examples

Below are examples of executing for loops, using the rewriting approach. Each example contains a for loop
and a sequence of assignments the loop variable in the correct order (for sets and dictionaries, remember
that the order is undefined).

1. (a) for y in [’hello’, ’there’, ’hi’]:

BODY_STATEMENTS

(b) y = ’hello’

BODY_STATEMENTS

y = ’there’

BODY_STATEMENTS

y = ’hi’

BODY_STATEMENTS

2. (a) for x in [17, 12, 14, 13, 14, 18]:

BODY_STATEMENTS

(b) x = 17

BODY_STATEMENTS

x = 12

BODY_STATEMENTS

x = 14

BODY_STATEMENTS

x = 13

BODY_STATEMENTS

x = 14

BODY_STATEMENTS

x = 18

BODY_STATEMENTS

3. (a) for x in [1, 3]:

for y in [2, 4]:

BODY_STATEMENTS

(b) x = 1

y = 2

BODY_STATEMENTS

y = 4

BODY_STATEMENTS

x = 3

y = 2

BODY_STATEMENTS

y = 4

BODY_STATEMENTS

4. (a) for x in [1, 1, 3]:

BODY_STATEMENTS_1

for y in {’a’, ’b’, ’c’}:

BODY_STATEMENTS_2

(b) x = 1

BODY_STATEMENTS_1

y = ’a’

BODY_STATEMENTS_2

y = ’b’

BODY_STATEMENTS_2

25

y = ’c’

BODY_STATEMENTS_2

x = 1

BODY_STATEMENTS_1

y = ’a’

BODY_STATEMENTS_2

y = ’b’

BODY_STATEMENTS_2

y = ’c’

BODY_STATEMENTS_2

x = 3

BODY_STATEMENTS_1

y = ’a’

BODY_STATEMENTS_2

y = ’b’

BODY_STATEMENTS_2

y = ’c’

BODY_STATEMENTS_2

5. (a) for (x, y) in [(’hello’, 5), (’this’, 4)]:

BODY_STATEMENTS_1

for z in [10, 15]:

BODY_STATEMENTS_2

(b) x = ’hello’

y = ’5’

BODY_STATEMENTS_1

z = 10

BODY_STATEMENTS_2

z = 15

BODY_STATEMENTS_2

x = ’this’

y = 4

BODY_STATEMENTS_1

z = 10

BODY_STATEMENTS_2

z = 15

BODY_STATEMENTS_2

6. (a) for x in {’you’, ’will’, ’consume’, ’it’}:

BODY_STATEMENTS

(b) x = ’consume’

BODY_STATEMENTS

x = ’you’

BODY_STATEMENTS

x = ’it’

BODY_STATEMENTS

x = ’will’

BODY_STATEMENTS

7.2 while Loop Statements

A while loop is like a for loop in that it executes a block of statements repeatedly. However, whereas a
for loop executes exactly one time for each element in a data structure, a while loop executes an indefinite

26

number of times while a condition is True (or, conversely, until a condition is False). Here’s an example of a
while loop that computes x to the power y, or xy:

Computes x**y

result = 1

while y > 0:

result = result * x

y = y - 1

result = x**y

A while loop has the general form below. Every while loop includes a Boolean condition and some
statements in its body.

while BOOL EXPR :

BODY STATEMENTS

The while loop can be confusing at first. It is easy to think that the loop exits the instant the condition
becomes false, even if that happens in the middle of the loop, but this is not true. The condition is only
checked once per iteration, at the beginning of that iteration, and if the condition is true then the entire
body executes before the condition is checked again.

To prevent this confusion, you should think of a while loop as an if statement that repeats over and
over again. That is, if the condition is true, then execute the body. If the condition is still true, execute the
body, and so on until the condition is not true.

7.2.1 Rules for Evaluation

To execute a while loop,

1. Evaluate the condition of the loop. If the condition evaluates to a non-Boolean value, convert the value
to a Boolean value (see http://docs.python.org/2/library/stdtypes.html#truth-value-testing).
If the value is False, exit the loop.

2. Execute the entire body of the loop. After executing the entire body, go to the previous step. If
you encounter a break statement, immediately exit the loop. If you encounter a continue statement,
immediately go to the previous step. (For more information, see the sections on the break and continue

statements.)

7.2.2 Examples

Below are examples of executing while loops. Each example contains a while loop, the values of several
variables before the loop, and each variable’s value after each iteration of the loop.

1. (a) # lst = [1, 3, 2], i = 0

while i < len(lst):

val = lst[i]

i += 1

(b) After iteration 1:
lst = [1, 3, 2], i = 1, val = 1

After iteration 2:
lst = [1, 3, 2], i = 2, val = 3

After iteration 3:
lst = [1, 3, 2], i = 3, val = 2

2. (a) # result = 1, x = 2, y = 3

while y > 0:

result = result * x

y = y - 1

27

http://docs.python.org/2/library/stdtypes.html#truth-value-testing

(b) After iteration 1:
result = 2, x = 2, y = 2

After iteration 2:
result = 4, x = 2, y = 1

After iteration 3:
result = 8, x = 2, y = 0

(c) Now, result is 23. The original values of x and y were 2 and 3.

3. (a) # fact = 1, i = 1

while i <= 4:

i += 1

fact *= i

(b) fact = 1, i = 2

fact = 2, i = 3

fact = 6, i = 4

fact = 24, i = 5

(c) At each iteration, fact is i!, the factorial of i.

7.3 break Statements

The break statement only appears inside the body of a for or while loop. Executing a break statement
immediately ends execution of the loop inside which it’s declared. Here’s an example of a break statement:

s is a string

i = 0

for char in s:

if char == ’ ’:

break

i += 1

i is the index of the first space in s

The break keyword always appears on its own line, with no other expressions on the line.

7.3.1 Rules for Evaluation

To execute a break statement, immediately end execution of the loop. Do not execute any more lines in the
body of the loop.

If the break statement is enclosed in a nested loop, only end execution of the innermost loop that contains
the break statement.

7.3.2 Examples

Below are examples of executing break statements. Each example contains a loop that contains a break

statement, and is formatted in the same style as in previous sections.

1. (a) # i = 0, s = ’hello there’

for char in s:

if char == ’ ’:

break

i += 1

(b) char = ’h’

i = 1

char = ’e’

i = 2

28

char = ’l’

i = 3

char = ’l’

i = 4

char = ’o’

i = 5

char = ’ ’

(c) Note that i is the index of the first space in s.

2. (a) for x in [1, 2]:

for y in [’a’, ’b’, ’c’]:

if y == ’b’:

break

(b) x = 1

y = ’a’

y = ’b’

x = 2

y = ’a’

y = ’b’

7.4 continue Statements

The continue statement only appears inside the body of a for or while loop. Executing a continue

statement immediately ends execution of the current iteration of the loop and skips to the next iteration
(as opposed to a break statement, which exits the loop completely). Here is an example of a continue

statement:

lst is a list

other = []

for val in lst:

if val == None:

continue

other.append(val)

other contains all the values in lst that are not None

Like the break keyword, the continue keyword always appears on its own line, with no other expressions
on the line. Note that in general, it is bad style to use continue because it is difficult to reason about.

7.4.1 Rules for Evaluation

To execute a continue statement, immediately move execution to the next iteration of the loop. Do not
execute any more statements in the body of the loop for this iteration.

For a while loop, make sure to test the condition before starting the next iteration, and for a for loop,
remember to reassign the loop variable.

Like the break statement, if the continue statement is enclosed in a nested loop, only skip to the next
iteration of the innermost loop that contains the continue statement.

7.4.2 Examples

Below are examples of executing continue statements. Each example contains a loop that contains a
continue statement, and is formatted in the same style as in previous sections.

Loop

lst = [1, None, None, 4], i = 0

for val in lst:

29

if val == None:

continue

i += 1

Assignments

val = 1

i = 1

val = None

val = None

val = 4

i = 2

Note that i is the number of values in lst that are not None

7.5 Comprehension Expressions

A comprehension provides a powerful and succinct way to generate a data structure. A comprehension can
do in a single line what would otherwise take a series of nested loops and if statements to do. Here’s are
some examples of comprehensions:

[c + "og" for c in {’b’, ’c’, ’d’}] ⇒
list

“bog” “cog” “dog”

[x for x in [5, 1, 4, 2, 3, 2, 8] if x >= 4] ⇒
list

5 4 8

{(x, y) for x in {’b’, ’p’} for y in {’at’, ’ay’}} ⇒

set�
�

�

tuple

“b” “at”
tuple

“b” “ay”
tuple

“p” “at”
tuple

“p” “ay”

{x:len(x) for x in [’some’, ’words’]} ⇒
dict�� ��“some”→4 “words”→5

A comprehension expression has the general form:

List [ELEM EXPR GEN CLAUSES IF CLAUSE]

Set { ELEM EXPR GEN CLAUSES IF CLAUSE }

Dictionary { KEY EXPR :VAL EXPR GEN CLAUSES IF CLAUSE }

Every comprehension has exactly one leading ELEM EXPR (element expression), one or more GEN CLAUSE

(generator clause), and zero or one trailing IF CLAUSE .

7.5.1 Rules for Evaluation

Evaluating a comprension requires expanding the comprehension into several lines of code. The first line of
code initializes a new variable to an empty data structure, and the following lines add elements to the data
structure in a loop. To evaluate a comprehension expression to a value,

1. Pick a variable name that not defined (we’ll choose struct), then write on the line preceding the
comprehension one of the following:

For a list comprehension struct = [].

For a set comprehension struct = set().

For a dictionary comprehension struct = {}.

30

2. Identify the one or more generator and if clauses in the comprehension. Starting with the leftmost,
and on the line following the assignment to struct, write these clauses as a series of progressively more
nested statements. (That is, each new statement should be in the body of the previous statement. The
example comprehension above should have three levels — an if statement inside two for loops.)

3. Choose one of the following:

If struct is a list Write the statement struct.append(ELEM EXPR) inside the most nested state-
ment.

If struct is a set Write the statement struct.add(ELEM EXPR) inside the most nested statement.

If struct is a dictionary Write the statement struct[KEY EXPR] = VAL EXPR inside the most nested
statement.

4. Replace the comprehension with a variable access to struct.

5. Execute the resultant statements, starting with the assignment to struct.

7.5.2 Examples

Below are examples of evaluating comprehension expressions. Each example contains a comprehension, the
equivalent for and if statements, and the final value to which the comprehension evaluates.

1. [len(y) for y in [’hello’, ’there’, ’hi’]]

(a) struct = []

for y in [’hello’, ’there’, ’hi’]:

struct.append(len(y))

struct

(b) struct ⇒
list

5 5 2

2. [x for x in [17, 12, 14, 13, 14, 18] if x <= 13]

(a) struct = []

for x in [17, 12, 14, 13, 14, 18]:

if x <= 13:

struct.append(x)

struct

(b) struct ⇒
list

12 13

3. len([x for x in [17, 12, 14, 13, 14, 18] if x <= 13])

(a) struct = []

for x in [17, 12, 14, 13, 14, 18]:

if x <= 13:

struct.append(x)

len(struct)

(b) len(struct) ⇒ 2

4. (a) [(x, y) for x in [1, 3] for y in [2, 4] if x > y]

struct = []

for x in [1, 3]:

for y in [2, 4]:

if x > y:

struct.append((x, y))

struct

31

(b) struct ⇒
list

(3, 2)

5. {x for x in [1, 1, 3]}

(a) struct = set()

for x in [1, 1, 3]:

struct.add(x)

struct

(b) struct ⇒
set�� ��1 3

6. {word:len(word) for word in [’hello’, ’there’, ’hi’]}

(a) struct = {}

for word in [’hello’, ’there’, ’hi’]:

struct[word] = len(word)

struct

(b) struct ⇒
dict�� ��“hello”→5 “there”→5 “hi”→2

7. {(x, y, z) for (x, y) in [(’hello’, 5), (’this’, 4)] for z in [10, 15]}

(a) struct = set()

for (x, y) in [(’hello’, 5), (’this’, 4)]:

for z in [10, 15]:

struct.add((x, y, z))

struct

(b) struct ⇒

set�
�

�

tuple

“hello” 5 10
tuple

“hello” 5 15
tuple

“this” 4 10
tuple

“this” 4 15

8 Functions

A function lets you name and reuse a particular sequence of statements. This makes your code shorter, more
readable, and easier to understand and debug. Additionally, if you ever work on a program in a team, you
will find that properly decomposing your program info functions makes it easy to divide the work among
members of the team.

8.1 Function Definition Statements

A function definition statement creates a new function that you can use in your code. Here is an example
function definition that creates a function that returns the absolute value of its parameter:

def absVal(x):

if x < 0:

x = -x

return x

In general, a function definition has the form:

def FUNCTION NAME (PARAM1 , PARAM2 , ..., PARAM N):

BODY STATEMENTS

A function definition is similar to a variable definition: it creates a binding in Python’s current frame
from the the function name (here, FUNCTION NAME) to a function value.

32

In Python, functions are values just like numbers or strings. Specifically, if you have a variable called x

that has the value 17, and then you define a function called x, Python will reassign the existing x to have
a function value instead of an integer value. To avoid this often-confusing mistake in your own code, avoid
creating functions and variables with the same name.

8.1.1 Rules for Evaluation

To execute a function definition statement,

1. Create a new function value. This function has formal parameters PARAM1 through PARAM N . When
called, it will execute the statements BODY STATEMENTS .

2. Perform a variable assignment (see section 4.1) with the symbol FUNCTION NAME . Give this variable
the function value you created in the previous step.

8.1.2 Examples

Below are examples of executing function definition statements. Each example contains a definition statement
and a description of how the statement affects the frame. The following examples are executed in the context
of the following frame.

Each example is executed in the context of this frame, unaffected by previous examples:

1. def absVal(x):

BODY_STATEMENTS

The definition creates a new local variable absVal and assigns it to a function value with formal pa-
rameter x and body BODY STATEMENTS .

2. def len(object):

BODY_STATEMENTS

The definition reassigns the local variable len and assigns it to a function value with formal parameter
object and body BODY STATEMENTS .

33

8.2 Variable Access Expressions, Refined

This section replaces Section 4.1 with a more powerful set of rules.
Recall that in general, a variable access expression such as x has the form:

VAR EXPR

Also, recall that Python uses a structure called a frame to keep track of the variables that currently exist.
In fact, Python can access and assign variables in multiple frames. These frames are arranged in a structure
called an environment, which is a list of frames.

Each frame consists of

• A set of bindings, each of which consists of a symbol (variable) bound to a value, and

• A reference to its “parent” frame.

In this course, the environment always has exactly two or three frames: either

• global → built-in (built-in is global’s parent), or

• local → global → built-in (global is local’s parent, built-in is global’s parent).

In either case, there is a “current” frame, where most of the work with variables is done. This is always the
first element of the list — either the local or the global. The current frame is bolded in the list above.

The local frame is a result of function calls
When Python executes a function call, it sets the current frame to a new, empty local frame. The local
frame’s parent is determined by where the function’s definition is. Every function definition in this course
is at the module level, so you can assume that every local frame’s parent is the global. (You can define a
function inside a function, which would make the local frame’s parent another local frame. This is powerful,
but potentially confusing and is beyond the scope of this course.)

Note that a function’s environment is distinct from where the function is called. This means that calling
function b from function a does not give b access to a’s variables. In general, this is a good thing — it means
that functions you call can’t inadvertently modify your variables.

This new view of the Python environment complicates variable accesses and assignments. From now on,
when interacting with variables, use the rules in the following sections for accesses and assignments.

8.2.1 Rules for Evaluation

This section replaces Section 4.1.1 with a more powerful set of rules.
To evaluate a variable access expression,

1. Search the current frame for a binding for the variable VAR EXPR . If you find the variable, replace the
variable access with that variable’s value. Otherwise try the current frame’s parent. Continue until
you either find the variable or reach the end of the environment.

2. If you reached the end of the environment without finding the variable, raise an error — the variable
is not defined.

34

8.2.2 Examples

Below are examples of evaluating variable access expressions. Each example’s first line is the variable access
expression, and the second is the value to which that expression evaluates.

Each example is executed in the context of this frame, unaffected by previous examples:

1. elem

5

2. i

“hello world”
After not finding i defined in the current frame, Python searched the subsequent frames in the envi-
ronment until finding a binding for i.

3. o

ERROR. The variable o is not defined.
Python searched each frame in the environment, but none of them had a binding for i.

4. len

5

8.3 Variable Assignment Statements

This section describes the rarely-used global keyword, which enables you to reassign a variable in a different
frame than the current one.

Recall that in general, a variable assignment statement such as x = 18 has the form:

VAR EXPR = EXPR

35

The global keyword
Even in an environment with multiple frames, all variable assignments happen in the main frame. Even if a
variable with this name exists in a parent frame, a variable assignment always creates a new variable in the
main frame and doesn’t reassign the older variable.

This causes a problem when you want to reassign a variable in the global frame from inside a function.
Instead of reassigning the global variable, the assignment creates a new variable of the same name in the
local frame.

To assign this older variable instead of creating a new variable, precede any assignments (or accesses) to
the variable with the global statement. The global statement follows the form:

global VAR EXPR

Where VAR EXPR is a variable in the global frame. After this statement, assigning VAR EXPR reassigns it
in the global frame, not the local one.

The global keyword does not affect variable access rules — only rules for reassignment.

8.3.1 Rules for Evaluation

To execute a variable assignment statement,

1. Evaluate EXPR to a value and replace the expression with that value.

2. Do one of the following:

If the assignment to VAR EXPR is preceded by global VAR EXPR Create a new variable in the
global frame called VAR EXPR and give it the value from the previous step. If a variable with
that name already exists in the global frame, overwrite its value with this new one.

Otherwise Create a new variable in the local frame called VAR EXPR and give it the value from the
previous step. If a variable with that name already exists in the local frame, overwrite its value
with this new one.

8.3.2 Examples

Below are examples of executing variable assignment statements. Each example contains one or two Python
statements and a description of how those statements affect the environment.

Each example is executed in the context of this frame, unaffected by previous examples:

36

1. var = 18

Creates var in local frame, sets value to 18.

2. elem = x

Updates elem in local frame, sets value to 12.

3. x = 18

Creates x in local frame, sets value to 18.

4. len = str

Updates len in the local frame, sets value to the value that str has.

5. elem = elem + 1

Updates elem in the local frame, sets value to 6.

6. b = not b

Updates b in the local frame, sets value to False.

7. x = 17 + len

Creates x in the local frame, sets value to 22.

8. elem = elem + str

ERROR. The plus operator can’t operate on a function and an integer.

9. b = b or False

Updates b in the local frame, sets value to True.

10. global i

i = ’a string’

Updates i in the global frame, sets value to “a string”.

37

8.4 Function Call Expressions

A function call expression invokes a function. Here are some examples of function calls:

str(17) ⇒ “17”
len([1, 2, 3]) ⇒ 3
abs(-1) ⇒ 1

In general, a function call has the form:

FUNC EXPR (PARAM EXPR , PARAM EXPR , ..., PARAM EXPR)

8.4.1 Rules for Evaluation

When you call a function, its body is evaluated in a new, empty frame. When the function returns, the new
frame is discarded and the frame that was the current frame for the call site is once again made the current
frame.

To evaluate a function call,

1. At the call site (where you call the function):

(a) Evaluate the function expression and replace it by the value.

(b) From left to right, evaluate each argument expression to a value and replace the expression with
that value.

(c) If the value of the function expression is not a function value, raise an error. If the number of
arguments (or the names, for keyword arguments) is not compatible with the function’s declara-
tion, raise an error. This usually requires that the number of actual arguments is the same as the
number of formal parameters.

2. Create a new local frame for the called function. Make its parent the frame where the function is
defined (not where it is called). Make the new frame be the current frame.

3. In the new local frame:

(a) Assign the actual argument values (the ones you evaluated at the call site) to the formal parameter
variables (in the called function). Note that a formal parameter variable is always a new variable
in the new frame, not a reuse of any existing variable of the same name.

(b) Evaluate the body of the called function. If you execute a return statement (of the form return

EXPR), evaluate the expression to a value and remember the value (this is called the “return
value”). If the return statement does not include an expression, then the return value is None.
If you finish executing the body without executing a return statement, then the return value is
None.

4. Discard the current frame, and make the previous current frame (at the coll site) current again.

5. At the call site (where you call the function): The function call expression evaluates to the function’s
return value. Replace the function call expression by that value.

8.4.2 Examples

Below are examples of evaluating function call expressions. Each example contains a function call, the value
of the function’s formal parameters before executing the call, and the function’s return value (the value to
which the function call evaluates). In the following examples, the following functions are defined:

38

def absVal(x):

if x < 0:

return -x

return x

def str(x):

return len(x)

def max(a, b):

if a > b:

return a

elif a < b:

return b

def list_contains_value(lst, val):

for element in lst:

if element == val:

return True

return False

def total_sum(lst, index):

if index == len(lst):

return 0

else:

return lst[index] + total_sum(lst, index + 1)

1. absVal(-7)

parameter values: x is -7
return value: 7

2. absVal(8)

parameter values: x is 8
return value: 8

3. absVal(0)

parameter values: x is 0
return value: 0

4. str([1, 2, 3])

parameter values: object is
list

1 2 3

return value: 3

5. max(17, -8)

parameter values: a is 17, b is -8
return value: 17

6. max(17, 17)

parameter values: a is 17, b is 17
return value: None

7. list contains value([1, 2, 3], 4)

parameter values: lst is
list

1 2 3 , val is 4

return value: False

39

8. list contains value([], 0)

parameter values: lst is
list

, val is 0

return value: False

9. list contains value([’a’, ’b’], ’a’)

parameter values: lst is
list

“a” “b” , val is “a”

return value: True

10. total sum([], 0)

parameter values: lst is
list

, index is 0

return value: 0

11. total sum([1], 0)

parameter values: lst is
list

1 , index is 0

return value: 1

12. total sum([1, 2, 3], 0)

parameter values: lst is
list

1 2 3 , index is 0

return value: 6

13. total sum([], 1)

parameter values: lst is
list

, index is 1

ERROR: list index out of range

40

	Introduction
	The Structure of a Python Program
	How to Execute a Python Program

	Literal Expressions
	Operator Expressions
	Binary Expressions
	Compound Expressions
	Unary Expressions

	Variables
	Variable Access Expressions
	Variable Assignment Statements

	If Statements
	Rules for Evaluation
	Examples

	Data structures: Lists, Tuples, Sets, and Dictionaries
	Constructor Expressions
	Data Structure Access Expressions
	Data Structure Assignment Statements
	Sequence Slice Access and Assignment Expressions
	del Statements

	Loop Statements
	for Loop Statements
	while Loop Statements
	break Statements
	continue Statements
	Comprehension Expressions

	Functions
	Function Definition Statements
	Variable Access Expressions, Refined
	Variable Assignment Statements
	Function Call Expressions

