More Data Abstraction

UW CSE 190p
Summer 2012

Recap of the Design Exercise

You were asked to design a module — a set of related
functions.

Some of these functions operated on the same data
structure

— a list of tuples of measurements

— a dictionary associating words with a frequency count
Both modules had a common general form

— One function to create the data structure from some
external source

— Multiple functions to query the data structure in various
ways

— This kind of situation is very common

What we’ve learned so far

e data structure
— a collection of related data
— the relevant functions are provided for you
— Ex: list allows append, sort, etc.

— What if we want to make our own kind of “list,” with its
own special operations?

e module
— a named collection of related functions

— but shared data must be passed around explicitly

— What if we want to be sure that only our own special kind
of list is passed to each function?

Terms of Art

* Abstraction: Emphasis on exposing a useful interface.
* Encapsulation: Emphasis on hiding the implementation details.

* Information Hiding: The process by which you achieve
encapsulation.

* Procedural abstraction: Hiding implementation details of
functions

* Data Abstraction: Hiding implementation details of data types

e Qverall:

— Your job is to choose which details to hide and which
details to expose.

— The language’s job is to provide you with machinery to get
this done

Tools for abstraction

e Functions

* Modules
— A named set of related functions
— A namespace mechanism to refer to avoid conflicts

e What else?

Tools for abstraction: Default Values

* Asyou generalize a function, you tend to add parameters.

* Downsides:
— A function with many parameters can be awkward to call
— Existing uses need to be updated

twittersearch (query) :
"""Return the responses from the query”””
url = "http://search.twitter.com/search.json?q=" + query
remote file = urllib.urlopen (url)

raw_response = remote file.read()

response = Jjson.loads (raw_response)
[tweet["text"] for tweet in response['"results"]]

twittersearch (query, page=1l):
""”"Return the responses from the query for the given page”””
resource = “http://search.twitter.com/search. json”
gs = “"?g=" + query + “&page=" + page
url = resource + gs
remote file = urllib.urlopen (url)

raw_response = remote file.read()

response = Jjson.loads (raw_response)
[tweet["text"] for tweet in response['"results"]]

e Data Abstraction, first attempt:
* Group related functions in a module

def read words (filename) :

Text Analysis

“”"Return a dictionary mapping each word in filename to its

frequency// ”r
words = open(filename) .read () .split()
wordcounts = {}

for w in words:
cnt = wordcounts.setdefault(w, 0)
wordcounts|[w] = cnt + 1

return wordcounts

def wordcount (wordcounts, word) :
“”""”Return the count of the given word”””
return wordcounts|[word]

def topk (wordcounts, k=10):
“W”"Return top 10 most frequent words”””

scores_with words = [(s,w) for (w,s) in wordcounts.items()]

scores_with words.sort()
return scores with words[0:k]

def totalwords (wordcounts) :

“W”"Return the total number of words in the file”””

return sum([s for (w,s) in wordcounts])

program to compute top 10:
wordcounts = read words (filename)
result = topk (wordcounts, 10)

The wordcount dictionary is exposed to the user.

If we want to change our implementation to use a list, we
can’t be sure we won’t break their program.

We want to collect all the data we need and all the
functions we need and bring them together into one unit.

e Data Abstraction, first attempt:
* Group related functions in a module
* Cons: Doesn’t achieve encapsulation

e QOtherideas?

my new datatype = {}

my new datatype[“read words”] = read words
my new datatype[“topk”] = topk
my new _datatype[“wordcounts”] = {}

wordcounts = my new datatype[“read words”] (“somefile.txt”)

We're no better off. We have everything lumped into one place, but the different
functions can’t communicate with each other.

For example, the read_words function can’t pass the wordcounts dictionary
directly to the topk function. So the user still has access, and we don’t trust users.

e Data Abstraction, first attempt:
* Group related functions in a module
* Cons: Doesn’t achieve encapsulation
e Data Abstraction, second attempt:

* Group related functions and data into a data structure
* Didn’t really help, and made the syntax more difficult.

e Other ideas?

Global variable?

wordcounts = {}

def read words (filename) :
“”"Return a dictionary mapping each word to its frequency”””
words = open(filename) .read () .split()
for w in words:
cnt = wordcounts.setdefault(w, 0)
wordcounts[w] = cnt + 1

def wordcount (word) :
“""”Return the count of the given word”””
return wordcounts|[word]

def topk(k=10):
“""Return top 10 most frequent words”””
scores_with words = [(s,w) for (w,s) in wordcounts.items()]
scores_with words.sort()
return scores with words[0:k]

def totalwords() :
“W7"Return the total number of words in the file”””
return sum([s for (w,s) in wordcounts])

program to compute top 10:

read words (filename)
result = topk(10)

We’re no longer passing wordcounts around explicitly!

Problem solved?

Data Abstraction, first attempt:
* Group related functions in a module
* We have to rely on the user to pass the right values around
* We can’t be sure we won’t break their program if we change
our implementations
Data Abstraction, second attempt:
* Group related functions and data into a data structure
* Didn’t really help, and made the syntax more difficult.

Data Abstraction, third attempt:

* Use a global variable to manage communication between
functions

* Avoids handing off values to that untrustworthy user
e But pollutes the global namespace
* And the user still handles our dictionary

Other ideas?

Global variable, but we can change

how its used.

def read words (filename) :
wrr ek ok ping each word to its frequency”””
ourdata.wordcounts = {}
words = open(filename) .read () .split()
for w in words:
cnt| = ourdata.wordcounts.setdefault(w, O0)
| ourdata.wordcounts[w] = cnt + 1

def wordcount (word) :
“W”"Return the count of the given word”””
returd ourdata.wordcounts [word] l

def topk (k=10) :
“""Return top 10 most frequent words”””
scores_with words = [(s,w) for (w,s) in[ourdata.wordcounts]items()]

scores_with words.sort()
return scores with words[0:k]

def totalwords() :
“W7"Return the total number of words in the file”””
return sum([s for (w,s) ir] ourdata.wordcounts])

Data Abstraction, first attempt:
* Group related functions in a module
 We have to rely on the user to pass the right values around

* We can’t be sure we won’t break their program if we change our
implementations

Data Abstraction, second attempt:
* Group related functions and data into a data structure
* Didn’t really help, and made the syntax more difficult.

Data Abstraction, third attempt:
e Use a global variable to manage communication between functions
* Avoids handing off values to that untrustworthy user
e But pollutes the global namespace
* And the user still handles our dictionary

Data Abstraction, fourth attempt:

* Use a global variable, but make it generic so the user doesn’t see that
we’re using a dictionary, a list, or whatever

 Still pollutes the global namespace
* The user still might get their grubby paws on our implementation

Classes

* Aclass is like a module: it provides a
namespace for a set of functions

* Aclassis like a function: it generates a local
scope for variables that won’t be seen outside
of the class

* Aclass can like a data structure: it generates a
storage area for data that you can retrieve
later.

class WordCounts:

def read words(self, filename):
“”"Return a dictionary mapping each word to its frequency”””
words = open(filename) .read() .split()
self .wordcounts = {}
for w in words:
cnt = self.wordcounts.setdefault(w, O0)
self .wordcounts[w] = cnt + 1

def wordcount(self . yoweaT™ A reference to shared state
“7"Retur unt of the given word”””
return selT . wordcounts[word]

def topk(self, k=10):
“""Return top 10 most frequent words”””
scores_with words = [(s,w) for (w,s) in self.wordcounts.items()]
scores_with words.sort()
return scores with words[0:k]

def totalwords (wordcounts) :
“W7"Return the total number of words in the file”””
return sum([s for (w,s) in self.wordcounts])

program to compute top 10:

wc = WordCounts ()
wc.read words (filename)
result = wc.topk(10)

program to compute top 10:

wc = WordCounts ()
wc.read words (filename)

wc.topk (10)

result
The shared state

Flﬂ

result = WordCounts. topk (wc, 10)
L ' Jl'J

A namespace, A function with
like a module two arguments

Quantitative Analysis

def read measurements (filename) :
“”"Return a dictionary mapping column names to data. Assumes
the first line of the file is column names.”””
datafile = open(filename)
rawcolumns = zip(*[row.split() for row in datafile])
columns = dict([(col[0], col[l:]) for col in rawcolumn
return columns

def tofloat (measurements, columnname) :
“”""Convert each value in the given iterable to a float”””
return [float(x) for x in measurements[columnname]]

def STplot (measurements):
“”""Generate a scatter plot comparing salinity and temperature”””
xs = tofloat (measurements, “salt”)

ys = tofloat (measurements, “temp”)
plt.plot(xs, ys)
plt.show ()

def minimumO2 (measurements) :
“”"Return the minimum value of the oxygen measurement”””
return min(tofloat (measurements, “02”))

class Measurements:

def read measurements (self, filename) :
“”"Return a dictionary mapping column names to data. Assumes
the first line of the file is column names.”””
datafile = open(filename)
rawcolumns = zip(*[row.split() for row in datafile])
self.columns = dict([(col[0], col[l:]) for col in rawcolumn

def tofloat(self, columnname) :
“”""Convert each value in the given iterable to a float”””
return [float(x) for x in self.columns[columnname]]

def STplot(self):
“""Generate a scatter plot comparing salinity and temperature”””
xs = tofloat(self.columns, “salt”)
ys = tofloat(self.columns, “temp”)
plt.plot(xs, ys)
plt.show ()

def minimumO2 (self) :
“”"Return the minimum value of the oxygen measurement”””
return min(tofloat(self.columns, “o02”))

mm = Measurements ()
mm.read measurements (filename)

result = mm.Stplot()

We now come to the decisive step of mathematical abstraction: we forget
about what the symbols stand for. ...[The mathematician] need not be idle;

there are many operations which he may carry out with these symbols,
without ever having to look at the things they stand for.

Hermann Weyl, The Mathematical Way of Thinking

Abstraction and encapsulation are complementary concepts: abstraction
focuses on the observable behavior of an object... encapsulation focuses
upon the implementation that gives rise to this behavior... encapsulation is
most often achieved through information hiding, which is the process of

hiding all of the secrets of object that do not contribute to its essential
characteristics.

Grady Booch

