
Recursion

Michael Ernst

CSE 190p

University of Washington

To seal: moisten flap,

fold over, and seal

Three recursive algorithms

• Sorting

• GCD (greatest common divisor)

• Exponentiation

Used in cryptography,

which protects information

and communication

Sorting a list

• Python’s sorted function

returns a sorted version of a list.

sorted([4, 1, 5, 2, 7])⇒ [1, 2, 4, 5, 7]

• How could you implement sorted?

• Idea (“quicksort”, invented in 1960):

– Choose an arbitrary element (the “pivot”)

– Collect the smaller items and put them on its left

– Collect the larger items and put them on its right

Sir Anthony Hoare

First version of quicksort

def quicksort(thelist):

pivot = thelist[0]

smaller = [elt for elt in thelist if elt < pivot]

larger = [elt for elt in thelist if elt > pivot]

return smaller + [pivot] + larger

print quicksort([4, 1, 5, 2, 7])

There are three problems with this definition

Write a test case for each problem

Near-final version of quicksort

def quicksort(thelist):

if len(thelist) < 2:

return thelist

pivot = thelist[0]

smaller = [elt for elt in thelist if elt < pivot]

larger = [elt for elt in thelist if elt > pivot]

return quicksort(smaller) + [pivot] + quicksort(larger)

How can we fix the problem with duplicate elements?

Handling duplicate pivot items

def quicksort(thelist):

if len(thelist) < 2:

return thelist

pivot = thelist[0]

smaller = [elt for elt in thelist if elt < pivot]

pivots = [elt for elt in thelist if elt == pivot]

larger = [elt for elt in thelist if elt > pivot]

return quicksort(smaller) + pivots + quicksort(larger)

def quicksort(thelist):

if len(thelist) < 2:

return thelist

pivot = thelist[0]

smaller = [elt for elt in thelist[1:] if elt <= pivot]

larger = [elt for elt in thelist if elt > pivot]

return quicksort(smaller) + [pivot] + quicksort(larger)

GCD (greatest common divisor)

gcd(a, b) = largest integer that divides both a and b

• gcd(4, 8) = 4

• gcd(15, 25) = 5

• gcd(16, 35) = 1

How can we compute GCD?

Euclid’s method for computing GCD
(circa 300 BC, still commonly used!)

a if b = 0

gcd(a, b) = gcd(b, a) if a < b

gcd(a-b, b) otherwise

Python code for Euclid’s algorithm

def gcd(a, b):

if b == 0:

return a

if a < b:

return gcd(b, a)

return gcd(a-b, b)

Exponentiation

Goal: Perform exponentiation, using only addition,
subtraction, multiplication, and division. (Example: 34)
def exp(base, exponent):

"""Exponent is a non-negative integer"""

if exponent == 0:

return 1

return base * exp(base, exponent - 1)

Example:

exp(3, 4)

3 * exp(3, 3)

3 * (3 * exp(3, 2))

3 * (3 * (3 * exp(3, 1)))

3 * (3 * (3 * (3 * exp(3, 0))))

3 * (3 * (3 * (3 * 1)))

Faster exponentiation

Suppose the exponent is even.

Then, baseexponent = (base*base)exponent/2

Examples: 34 = 92 92 = 811 512 = 256 256 = 6253

New implementation:
def exp(base, exponent):

"""Exponent is a non-negative integer"""

if exponent == 0:

return 1

if exponent % 2 == 0:

return exp(base*base, exponent/2)

return base * exp(base, exponent - 1)

Comparing the two algorithms

Original algorithm: 12 multiplications

512

5 * 511

5 * 5 * 510

5 * 5 * 5 * 59

…

5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 50

5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 1

5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5

5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 25

5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 125

…

244140625

Fast algorithm: 5 multiplications

512

(5 * 5)6

256

(25 * 25)3

6253

625 * 6252

625 * 625 * 6251

625 * 625 * 625 * 6250

625 * 625 * 625 * 1

625 * 625 * 625

625 * 390625

244140625

Speed matters: In cryptography, exponentiation is done with 600-digit numbers.

Recursion: base and inductive cases

• Recursion expresses the essence of divide and
conquer

– Solve a smaller subproblem, use the answer to solve
the original problem

• A recursive algorithm always has:

– a base case (no recursive call)

– an inductive or recursive case (has a recursive call)

• What happens if you leave out the base case?

• What happens if you leave out the inductive
case?

Recursion vs. iteration

• Any recursive algorithm can be re-implemented
as a loop instead

– This is an “iterative” expression of the algorithm

• Any loop can be implemented as recursion
instead

• Sometimes recursion is clearer and simpler

– Mostly for data structures with a recursive structure

• Sometimes iteration is clearer and simpler

More examples of recursion

• List algorithms: recursively process all but the

first element of the list, or half of the list

• Map algorithms: search for an item in part of

a map (or any other spatial representation)

• Numeric algorithms: Process a smaller value

