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Two key ideas

1. The scientific method

2. Divide and conquer

If you master those, you will find debugging 

easy, and possibly enjoyable



The scientific method

• Create a hypothesis

• Design an experiment to test that hypothesis
– Ensure that it yields insight

• Understand the result of your experiment
– If you don’t understand, then possibly suspend your main line of work 

to understand that

Tips:

• Be systematic
– Never do anything if you don't have a reason

– Don’t just flail
• Random guessing is likely to dig you into a deeper hole

• Don’t make assumptions (verify them)



Example experiments

1. An alternate implementation of a function

– Run all your test cases afterward

2. A new, simpler test case

– Examples:  smaller input, or test a function in 

isolation

– Can help you understand the reason for a failure



Your scientific notebook

Record everything you do

• Specific inputs and outputs (both expected and actual)

• Specific versions of the program
– If you get stuck, you can return to something that works

– You can write multiple implementations of a function

• What you have already tried

• What you are in the middle of doing now
– This may look like a stack!

• What you are sure of, and why

Your notebook also helps if you need to get help or reproduce 
your results



Divide and conquer

• Where is the defect (or “bug”)?

• Your goal is to find the one place that it is

• Finding a defect is often harder than fixing it

• Initially, the defect might be anywhere in your program

– It is impractical to find it if you have to look everywhere

• Idea:  bit by bit reduce the scope of your search

• Eventually, the defect is localized to a few lines or one 
line; then you can fix it 



Divide and conquer in the program

• Localize the defect to part of the program (e.g., one function, or one part 
of a function)

• Code that isn’t executed cannot contain the defect

• Test one function at a time

• Add assertions or print statements
– The defect is executed before the failing assertion (and maybe after a 

succeeding assertion)

• Split complex expressions into simpler ones

• Example: Failure in
a = set({graph.neighbors(user)})

Change it to

x = graph.neighbors(user)

y = {x}

a = set(x)

(but with better variable names).

– The error occurs on the "y = {x}" line



Debugging via print (or “logging”) 

statements

• A sequence of print statements is a record of the 
execution of your program

• The print statements let you see and search multiple 
moments in time

• Print statements are a useful technique, in moderation

• Be disciplined

– Too much output is overwhelming rather than informative

– Remember the scientific method:  have a reason (a 
hypothesis to be tested) for each print statement

– Don’t only use print statements



Divide and conquer in time

• The code used to work (for some test case)

• The code now fails

• The defect is related to some line you changed

• This is useful only if you kept a version of the 
code that worked (use good names!)

• This is most useful if you have made few changes

• Moral:  test often!
– Fewer lines to compare

– You remember what you were thinking/doing recently



Divide and conquer in test cases

• Your program fails when run on some large 

input

– It’s hard to comprehend the error message

– The log of print statement output is overwhelming

• Try a smaller input

– Choose an input with some but not all 

characteristics of the large input

– Example:  Unicode characters, zeroes in data, …


