Elementary statistics

Michael Ernst
CSE 190p
University of Washington
A dice-rolling game

• Two players each roll a die
• The higher roll wins
 – Goal: roll as high as you can!
• Repeat the game 6 times
Hypotheses regarding Mike’s success

- Luck
- Fraud
 - loaded die
 - inaccurate reporting

- How likely is luck?
- How do we decide?
Questions that statistics can answer

• I am flipping a coin. Is it fair? How confident am I in my answer?
• I have two bags of beans, each containing some black and some white beans. I have a handful of beans. Which bag did the handful come from?
• I have a handful of beans, and a single bag. Did the handful come from that bag?

• Does this drug improve patient outcomes?
• Which website design yields greater revenue?
• Which baseball player should my team draft?
• What premium should an insurer charge?
• Which chemical process leads to the best-tasting beer?
What can happen when you roll a die?

What is the likelihood of each?
A dice-rolling experiment

Game: Roll one die, get paid accordingly:

<table>
<thead>
<tr>
<th>Roll</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Payoff</td>
<td>1 CHF</td>
<td>2 CHF</td>
<td>3 CHF</td>
<td>4 CHF</td>
<td>5 CHF</td>
<td>0 CHF</td>
</tr>
</tbody>
</table>

Player self-reports the die roll and takes the money — no verification of the actual roll

From “Lies in disguise: An experimental study on cheating” by Urs Fischbacher and Franziska Heusi
What can happen when you roll two dice?

How likely are you to roll 11 or higher?

This probability is known as the “p value”.
How to compute p values

• Via a statistical formula
 – Requires you to make assumptions and know which formula to use

• Computationally (simulation)
 – Run many experiments
 – Count the fraction with a better result
 • Requires a metric/measurement for “better”
 – Requires you to be able to run the experiments
Interpreting p values

p value of 5% or less = statistically significant
 – This is a convention; there is nothing magical about 5%

Two types of errors may occur in statistical tests:
• false positive (or false alarm or Type I error): no real effect, but report an effect (through good/bad luck or coincidence)
 – If no real effect, a false positive occurs about 1 time in 20
 – If there is a real effect, a false positive occurs less often
• false negative (or miss or Type II error): real effect, but report no effect (through good/bad luck or coincidence)
 – The smaller the effect, the more likely a false negative is
 – How many die rolls to detect a die that is only slightly loaded?

The larger the sample, the less the likelihood of a false positive or negative
WE FOUND NO LINK BETWEEN PURPLE JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN BROWN JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN PINK JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN BLUE JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN TEAL JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN SALMON JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN RED JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN TURQUOISE JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN MAGENTA JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN YELLOW JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN GREY JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN TAN JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN CYAN JELLY BEANS AND ACNE (P > 0.05).

WE FOUND A LINK BETWEEN GREEN JELLY BEANS AND ACNE (P < 0.05).

WE FOUND NO LINK BETWEEN MAUVE JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN BEIGE JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN LILAC JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN BLACK JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN PEACH JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN ORANGE JELLY BEANS AND ACNE (P > 0.05).

http://xkcd.com/882/
Correlation \neq causation

Ice cream sales and murder rates are correlated

http://xkcd.com/552/
Statistical significance ≠ practical importance