The Python Data Model

UW CSE 190p
Summer 2012

>>> conjugations = {
“see”:[“saw”, “sees”],
“walk” : ["walked”, “walks”]
\\doll : [Ildidll , \\doeSII]

\\bell : [\\wasll , \\isll]

}

>>> conjugations|[“see”]
?2??

>>> conjugations[“walk”][1]

27?7

>>> conjugations[“walk”][1][O]

27?7

>>> [word[O0] word conjugations|[“be”]]

2?7

>>> [pair pair conjugations.items ()] [0]

27?7

>>> [(pair[0][0], pair[1][O0][O]) pair conjugations.items ()] [1]
?27?7

>>> {pair[0] :pair[1] pair conjugations.items ()}

??7

>>> def double (x):
print “double:”, x + x

>>> print double (2)
27?7

Types: some definitions and context

Some historical languages were untyped
— You could, say, divide a string by a number, and the program would continue.

— The result was still nonsense, of course, and program behavior was completely
undefined.

— This was considered unacceptable

Modern languages may be staticly typed or dynamically typed
— “staticly typed” means that types are assigned before the program is executed

— “dynamically typed” means that types are assigned (and type errors caught) at
runtime

Modern languages may be strongly typed or weakly typed

— For our purposes, “weakly typed” means the language supports a significant
number of implicit type conversions.
* For example, (5 + “3”) could trigger a conversion from “3” to 3

For our purposes, Python can be considered
— strongly typed
— dynamically typed

Guess the Types

def mbar to mmHg(pressure):
return pressure * 0.75006

Guess the Types

def abs (x):
if wval < 0:
return -1 * wval
else:
return 1 * val

Guess the Types

def debug(x):
print x

Guess the Type

def index(value, somelist):
i=0
for ¢ in somelist:
1f ¢ == wvalue:
return 1
i=1i+1

Duck Typing

“If it walks like a duck and it talks like a duck, then it
must be a duck.”

(Note: this analogy can be misleading!)

At runtime, the operands are checked to make sure
they support the requested operation.

>>> 3 + “3”
>>> i 5:
i

Takeaway

* Think about types when designing functions, when
debugging, when reading code, when writing code....all
the time.

* Ask yourself “What operations are being applied to this
variable?” and “What values may this variable hold?”
— A list, or just anything compatible with a for loop?
— An integer, or anything that can be multiplied by an integer?

Mutable and Immutable Types

>>> def increment (uniquewords, word):

increment the count for word”””
uniquewords [word] = uniquewords.setdefault(word, 1) + 1

>>> mywords = dict()

>>> increment (mywords, “school”)
>>> print mywords

{'school': 2}

>>> def increment(value):
“““increment the wvalue???”””
value = value + 1

>>> myval = 5

>>> increment (myval)

>>> print myval
5

What’s going on?
Python’s Data Model

* Everything is an object

* Each object has an identity, a type, and a value
— id(obj) returns the object’s identity
— type(obj) returns the object’s type

|ldentity

The identity of an object can never change

— (Currently) implemented as the object’s address in
memory.

— You can check to see if two objects are identical
with the keyword

>>> A =

>>> B

>>> A =

True

>>> A
False
>>> C

>>> A
2227

n 1
-
i
bl Bd

>>> A
>>> B
>>> A
True

>>> A
False

ldentity

[1]
[1]

is B

Type

* The type of an object cannot change

* |t specifies two things:
— what operations are allowed
— the set of values the object can hold

Back to the Data Model

Everything is an object

Each object has an identity, a type, and a value
— id(obj) returns the object’s identity
— type(obj) returns the object’s type

An object’s identity can never change
An object’s type can never change

An object’s value can never change, unless it
has a mutable type

Example: Tuples vs. Lists

def updaterecord(record, position, wvalue):
“W““change the value at the given position”””

record[position] = wvalue

mylist = [1,2,3]

mytuple = (1,2,3)
updaterecord (mylist, 1, 10)
print mylist

updaterecord (mytuple, 1, 10)
print mytuple

Why did they do this?

>>> citytuple = (“Atlanta”, “GA”")

>>> type (citytuple)

<type 'tuple’>

>>> citylist = [“Atlanta”, “GA"]

<type ’'list'>

>>> weather[citytuple] = “super hot”

>>> weather[citylist] = “super hot”

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unhashable type: 'list'

What would this mean?

>>> citylist = [“Atlanta”, “GA"]
>>> weather[citylist] = “super hot”
>>> citylist[1l] = “Georgia”

>>> weather[[“Atlanta”, “GA"]]

P2°

Mutable and Immutable Types

* Immutable
— numbers, strings, tuples

e Mutable
— lists and dictionaries

Note: a set is mutable, but a frozenset is immutable

Comprehension Example

names = [“John von Neumann”, *“Grace Hopper”,
“Alan Turing”, *“Charles Babbage”, “Ada Lovelace”]

split names = [name.split(” ") for name in names]
last names = [split name[l] for split name in split names]

last name first = [sn[l] + “, “ + sn[0] for sn in split names]

Digression: More with
Comprehensions

You are given a function

def sim(sequencel, sequence?)
“””Return a number representing the similarity score between the two arguments“””

You are given two lists of sequences

orgl ["ACGTTTCA”, “AGGCCTTA”, “AAAACCTG"]
org2 = [“AGCTTTGA”, “GCCGGAAT”, “GCTACTGA”"]

You want to find all pairs of similar sequences: similarity(A,B) > threshold

[(x,y) for x in orgl for y in org2 if sim(x,y) > threshold]

Evaluating Comprehensions

[(x,y) for x in orgl for y in org2 if sim(x,y) > threshold]

—] l . j

an expression something
that can be
iterated

1 J
1

zero or more if clauses

for clause (required)
assigns value to the
variable x

Zero or more
aditional for
clauses

