Data Structures

UW CSE 190p
Summer 2012

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

xs = range (3)

xs = [1,2,3]

xs = ['a’,’b’,’c’]

xs = [1, ‘a’, 3]

xs = [[1,2,3], [‘a’,’b’,’c’]] # 1list of lists?

Xs = [x * 2 X range (3)]

XS [cels to faren (temp) temp measurements]

warmdays = [temp temp msrmts temp > 20]

List “Comprehensions”

ctemps = [17.1, 22.3, 18.4, 19.1]

Compare these two snippets for converting a
list of values from celsius to farenheit:

ftemps = []

for ¢ in ctemps:
f = celsius to farenheit(c)
ftemps.append (£f)

ftemps = [celsius to farenehit(c) for c in ctemps]

* This syntax is VERY useful: It is usually shorter, more readable, and more efficient.
* Letit become second nature!

From Last Class

We wrote this function:

def count unique (doc):
“““return the number of unique words in
unique count = 0
scratchpad = []
for word in doc:
if not word in scratchpad:

unique count = unique count + 1
return unique count

a list of strings”””

New Problem: Top 10 Most
Common Words

top 10 ASCII words

<3

lol

&

10 10° 10°

Exercise (5 min)

Sketch a function to return the top 10 most
common words in a document

What data structure(s) will you use?

def toplO(doc):

“W“Y“return a list of the top 10 most frequent words”””
initialize a histogram
for word in doc:

if word in histogram

increment its count

else

add it to the histogram
search histogram for top 10
most frequent words
return result

First Attempt: Two lists

uniquewords = [‘lol’, ‘omg’, ‘know’]
counts = [45, 23, 12]

def toplO(doc):
“““return a list of the top 10 most frequent words”””
uniquewords = []
counts = []
for word in doc:
1f word in uniquewords:
position = uniquewords.index (word)
counts|[position] = counts[position] + 1

else:
uniquewords . append (word)
now search for top 10 most frequent words..

A list of (count, word) pairs

>>> uniquewords = [[45, ‘lol’], [23, ‘omg’], [12, ‘know’]]

>>> uniquewords[1] [0]

def toplO(doc):
“““return a list of the top 10 most frequent words”””

uniquewords with counts = []

for word in doc:
match = [pair for pair in uniquewords if pair[l] ==
if match '= []:

pair = match[0] # why is this line here?
pair[0] = pair[0] + 1
else:
uniquewords.append([1l, word])
now search for top 10 most frequent words
uniquewords.sort ()
return uniquewords|[0:10]

word]

Digression: Lexicographic Order

Aaron :1, 9, 9]
Andrew 2. 1]
Angie 33]

a 1]

ddd :1’1]
aaaaa 1,1,1]

Mapping Values to Values

A list can be thought of as a (partial) function from
integers to list elements.

>>> somelist = [‘a’,’'b’',’'c’]
>>> somelist[1]
\bl

We can say this list “maps integers to strings”

What if we want to map strings to integers? Or
strings to strings?

>>>
>>>
>>>

>>>
>>>
>>>
>>>

>>>

Python Dictionaries

phonebook = dict()
phonebook [“"Alice”] = “212-555-4455"
phonebook [“Bob”] = “212-555-2211"

atomicnumber = {}
atomicnumber[“H”] = 1
atomicnumber[“Fe”] = 26
atomicnumber[“Au”] = 79

state = {“"Atlanta” : “GA”, “Seattle”

\\WA// }

Python Dictionaries (2)

>>> atomicnumber = {}

>>> atomicnumber[“H”] =1
>>> atomicnumber[“Fe”] 26
>>> atomicnumber[“Au”] = 79
>>> atomicnumber.keys ()

['H', lAul, 'Fe']
>>> atomicnumber.values ()
[1, 79, 26]

>>> atomicnumber.items ()

[('H', 1), ('Au', 79), ('Fe', 26)]

>>> atomicnumber["Au"]

79

>>> atomicnumber["B”]

Traceback (most recent call last):

File "<pyshell#102>", line 1, in <module>

atomicnumber["B"]

KeyError: 'B'

>>> atomicnumber.has key ("B")

False

Top k with a dictionary

>>> uniquewords = { ‘lol’ :45, ‘omg’ :23, ‘know’ :12 }
>>> uniquewords|[‘omg’]

def toplO(doc):

“W““return a list of the top 10 most frequent words”””

uniquewords {}

fq ord. iz .
if uniquewords.has key(‘omg’):

uniquewords|[‘omg’] = uniquewords|[‘omg’] +
else:

uniquewords|[‘omg’] =1
now search for top 10 most frequent words
bycount = [(pair[l], pair[0]) for pair in uniquewords.items ()]
bycount. sort ()
return bycount[0:10]

This “default” pattern is
so common, there is a
special method for it.

Top k with a dictionary

>>> uniquewords = { ‘lol’ :45, ‘omg’ :23, ‘know’ :12 }

>>> uniquewords|[‘omg’]

def toplO(doc):
“““return a list of the top 10 most frequent words”””
uniquewords = {}
for word in doc:
uniquewords|[‘omg’] = uniquewords.set default(‘omg’, 0) + 1

now search for top 10 most frequent words

bycount = [(pair[l], pair[0]) for pair in uniquewords.items ()]

bycount. sort ()
return bycount[0:10]

Types: some definitions and context

Some historical languages were untyped
— You could, say, divide a string by a number, and the program would continue.

— The result was still nonsense, of course, and program behavior was completely
undefined.

— This was considered unacceptable

Modern languages may be staticly typed or dynamically typed
— “staticly typed” means that types are assigned before the program is executed

— “dynamically typed” means that types are assigned (and type errors caught) at
runtime

Modern languages may be strongly typed or weakly typed

— For our purposes, “weakly typed” means the language supports a significant
number of implicit type conversions.
* For example, (5 + “3”) could trigger a conversion from “3” to 3

For our purposes, Python can be considered
— strongly typed
— dynamically typed

Guess the Types

def mbar to mmHg(pressure):
return pressure * 0.75006

Guess the Types

def abs (x):
if wval < 0:
return -1 * wval
else:
return 1 * val

Guess the Types

def debug(x):
print x

Guess the Type

def index(value, some list):
i=0
for ¢ in somelist:
1f ¢ == wvalue:
return 1
i=1i+1

Duck Typing

“If it walks like a duck and it talks like a duck, then it
must be a duck.”

(Note: this analogy can be misleading!)

At runtime, the operands are checked to make sure
they support the requested operation.

>>> 3 + “3”
>>> i 5:
i

Takeaway

* Think about types when designing functions,

when debugging, when reading code, when
writing code....all the time.

e Ask yourself “What is this variable allowed to
be?”
— A list, or anything compatible with a for loop?

— An integer, or anything that can be multiplied by
an integer?

Mutable and Immutable Types

>>> def increment (uniquewords, word):

increment the count for word”””
uniquewords [word] = uniquewords.setdefault(word, 1) + 1

>>> mywords = dict()

>>> increment (mywords, “school”)
>>> print mywords

{'school': 2}

>>> def increment(value):
“““increment the wvalue???”””
value = value + 1

>>> myval = 5

>>> increment (myval)

>>> print myval
5

Tuples and Lists

def updaterecord(record, position, wvalue):
“W““change the value at the given position”””
record[position] = wvalue

mylist = [1,2,3]

mytuple = (1,2,3)
updaterecord (mylist, 1, 10)
updaterecord (mytuple, 1, 10)
print mylist

print mytuple

Why did they do this?

>>> citytuple = (“Atlanta”, “GA”")

>>> type (citytuple)

<type 'tuple’>

>>> citylist = [“Atlanta”, “GA"]

<type ’'list'>

>>> weather[citytuple] = “super hot”

>>> weather[citylist] = “super hot”

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unhashable type: 'list'

Answer: Performance. If the system knows for sure that a value can never be
changed, it can cheat.

>>>
>>>
>>>

>>>
??7

No really, why?

citylist = [“Atlanta”, “GA"]
weather[citylist] = “super hot”
citylist[1l] = “Georgia”
weather[[“Atlanta”, “GA"]]

Mutable and Immutable Types

* Immutable
— numbers, strings, tuples

e Mutable
— lists and dictionaries

