Recursion II
CSE 120 Spring 2017

Instructor: Justin Hsia

Teaching Assistants: Anupam Gupta, Braydon Hall, Eugene Oh, Savanna Yee
Administrivia

- **Assignments:**
 - Mid-Quarter Survey due tonight (5/3)
 - Recursive Tree due Thursday (5/4)
 - Color Checker due Saturday (5/6)
 - Living Computers Museum Report (5/14)

- **Guest lecture on Friday:** Proofs and Computation
 - Reading Check (5/4): mathematics

- **Midterm re-grade requests due tonight (5/3)**
 - Adjusted scores will be uploaded to Canvas after regrade requests are handled
Recursion Review

- A *recursive* function calls itself to solve its problem

- **Base Case:**
 - What happens for special/simple inputs
 - Need base case(s) to prevent infinite recursion

- **Recursive Case:**
 - Function calls itself one or more times on “smaller” problems
 - How to make the problem smaller varies ← this is the tricky part!
Outline

- Example: Tower of Hanoi
- Variable Scope Revisited
- Example: Fibonacci
- Example: Snowflake Fractal
Tower of Hanoi

- **Mathematical puzzle/game**
 - Goal is to move entire stack from one peg to any other peg

- **Rules:**
 - There are only 3 available pegs
 - Can only move one disk at a time
 - A disk cannot sit on top of a smaller one
Solving the Tower of Hanoi

- The animation was probably daunting, but the recursive solution is surprisingly clean
 - Can still be mind-blowingly confusing to understand
 - For illustrative purposes – you’re not responsible for knowing this

- **Goal:** Move the tower of height 5 from peg 1 to peg 3
 - Let’s assume our solution looks something of the form:
 moveTower(int height, int startPeg, int endPeg)
Solving the Tower of Hanoi

- To reconstruct the tower on peg 3, we first need to get the largest disk (red) onto peg 3
 - Can’t do this while the other disks are on top
 - Solution: First move the 4 disks on top to peg 2
Solving the Tower of Hanoi

- To reconstruct the tower on peg 3, we first need to get the largest disk (red) onto peg 3
 - Can’t do this while the other disks are on top
 - **Solution**: First move the 4 disks on top to peg 2
 - `moveTower(4, peg1, peg2); ← just assume it works!`
Solving the Tower of Hanoi

- Now we can move the red disk to peg 3
Solving the Tower of Hanoi

- Now we can move the red disk to peg 3
 - `moveTower(1, peg1, peg3);`

- **Next Goal:** Move the tower of height 4 from peg 2 to peg 3
 - **Solution:** First move the 3 disks on top to peg 1, then move the orange disk to peg 3
Solving the Tower of Hanoi

- Generalized recursive solution to move tower of height H from *source* peg to *destination* peg:
 - Move tower of height $H-1$ from *source* peg to *extra* peg
 - Move the remaining bottom disk from *source* peg to *destination* peg
 - Move tower of height $H-1$ from *extra* peg to *destination* peg
Solving the Tower of Hanoi

- Generalized recursive solution to move tower of height H from *source* peg to *destination* peg:
 - `moveTower(H-1,peg1,peg2);`
 - `moveTower(1,peg1,peg3);`
 - `moveTower(H-1,peg2,peg3);`
Solving the Tower of Hanoi

- What’s the base case?
 - Don’t recurse (but still move disk) when \(H == 1 \)
Outline

- Example: Tower of Hanoi
- **Variable Scope Revisited**
- Example: Fibonacci
- Example: Snowflake Fractal
Variable Scope Revisited

- Internal variables (*i.e.* parameters) only exist within the function they are declared
 - The variables “cease to exist” when the function returns

- Each individual call of a recursive function contains a *separate* set of parameters, even though they have the same variable names
 - Parameters have initial values set by the passed arguments
Variable Scope Revisited

- Local variables take precedent over variables of the same name
 - Detail Removal: internal variable names are independent of external variable names, even if the same names are used

- We can think of every function call as creating a new function *environment*, which later disappears once the function returns
 - Global variables exist outside of these environments and are accessible to all of them
‘Inception’ Analogy (2010 film)

- Each dream is a function call, each “kick” is a function return
 - *e.g.* the ‘reality’ function calls the ‘Robert Fischer dream’ function
 - Characters are the parameters – they may have the same names, but are different (clothes?) in every layer
Add Example

- **Recursive `add()`**:

```c
int add(int x, int y) {
  if(y==0) {
    return x;
  } else {
    return add(x+1,y-1);
  }
}
```

- **Environment diagram if we call `add(3,2)`**:

```
\[
\begin{array}{c}
\text{add(3,2)}
\end{array}
\]
```

```
\[
\begin{array}{c}
x: 3 \\
y: 2
\end{array}
\]
```

```
\[
\begin{array}{c}
x: 4 \\
y: 1
\end{array}
\]
```

```
\[
\begin{array}{c}
x: 5 \\
y: 0
\end{array}
\]
```

```
\[
\begin{array}{c}
\text{return 5}
\end{array}
\]
```
```
\[
\begin{array}{c}
\text{return 5}
\end{array}
\]
```
```
\[
\begin{array}{c}
\text{return 5}
\end{array}
\]
```
Peer Instruction Question

- In the shown code, what will be printed after "3: "?


```java
int x = 0;

void setup() {
    x = 1;
}

void draw() {
    println("1: " + x);
    foo(4);
    println("3: " + x);
    noLoop();
}

void foo(int x) {
    x = x + 1;
    println("2: " + x);
}
```

A. 0
B. 1
C. 4
D. 5
Outline

- Example: Tower of Hanoi
- Variable Scope Revisited
- **Example: Fibonacci**
- Example: Snowflake Fractal
Fibonacci

- The Fibonacci Sequence is as follows:
 - 0, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...
 - The first two numbers are 0 and 1
 - All following numbers are the sum of the previous two numbers
 - https://en.wikipedia.org/wiki/Fibonacci_number

- Appeared as syllable counting in Indian mathematics, then more famously in a math puzzle regarding rabbit breeding:
Fibonacci

- The Fibonacci Sequence is as follows:
 - 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...
 - \(\text{fib}(0) = 0, \text{fib}(1) = 1 \)
 - Otherwise, \(\text{fib}(n) = \text{fib}(n-1) + \text{fib}(n-2) \)
Fibonacci Call Structure

- Call structure of `add()` looked like a call list
 - It contained one recursive call: `add(x+1, y-1)`

- Fibonacci makes how many recursive calls?
 - `fib()` looks like a call tree – each recursive case makes two calls to `fib()`
Outline

- Example: Tower of Hanoi
- Variable Scope Revisited
- Example: Fibonacci
- Example: Snowflake Fractal

The following exercise is from the Beauty and Joy of Computing (BJC) curriculum: http://bjc.berkeley.edu/bjc-r/cur/programming/recur/fractals/snowflake.html
Koch Snowflake

- A mathematical curve that is one of the earliest fractal curves to have been described
 - 3 arranged copies of the same fractal
Code: Triangle

- Copies of fractal arranged in a triangle:

```cpp
void draw() {
    noLoop();
}
```
Code: Triangle

- Copies of fractal arranged in a triangle:

```cpp
void draw() {
    translate(250,100); // start at top point
    rotate(radians(60));
    for(int i=0; i<3; i=i+1) {
        line(0,0,len,0); // replace with fractal
        translate(len,0);
        rotate(radians(120));
    }
    noLoop();
}
```
Drawing the Fractal

- Break each segment into 4 segments of equal length
 - First call:
 - Second call:
 - Third call:
 - Fourth call:
Code: Fractal

- First call:

```c
void snowflake_fractal(float len) {
    line(0,0,len/3,0);
    translate(len/3,0);
    rotate(radians(-60));
    line(0,0,len/3,0);
    translate(len/3,0);
    rotate(radians(120));
    line(0,0,len/3,0);
    translate(len/3,0);
    rotate(radians(-60));
    line(0,0,len/3,0);
    translate(len/3,0);
    rotate(radians(-60));
    line(0,0,len/3,0);
    translate(len/3,0);
}
```
Code: Make It Recursive

- **Recursive case**
 - Instead of drawing a line, draw the fractal!
 - Each smaller segment is 1/3 the length of the larger segment
 - Replace `line()` and `translate()` command pairs with calls to `snowflake_fractal()`

- **Base case**
 - Introduce `level` variable
 - Arbitrarily tells us how deep to recurse
 - When `level==0`, just draw line instead of fractal
The Result

- Can draw snowflake fractal of arbitrary depth!