Lightbot and Functions
CSE 120 Winter 2017

Instructor: Justin Hsia
Teaching Assistants: Anupam Gupta, Braydon Hall, Eugene Oh, Savanna Yee
Administrivia

- **Check-in**
 - How is Exploring Lightbot going? (due tonight)
 - How is your portfolio setup going? (due Friday)
 - Sorry that we are not teaching you HTML/CSS
 - Any questions on course navigation?

- Reading Check 1 is on Canvas and due in the 24 hours preceding your Thursday lab
 - 20 minutes, short answer

- Personal Values assignment due Sunday (4/2)
As Experienced Lightbot Players...

- What are you doing in Lightbot?
 - Commanding a robot through a world of blocks and switches
As Experienced Lightbot Players...

- What are you doing in Lightbot?
 - Commanding a robot through a world of blocks and switches

- Programming is *commanding* an agent
 - In this case, the agent is a robot
 - The agent is usually a computer, but could be a person or other device
As Experienced Lightbot Players...

- What are you doing in Lightbot?
 - Commanding a robot through a world of blocks and switches

- Programming is *commanding* an agent
 - In this case, the agent is a robot
 - The agent is usually a computer, but could be a person or other device

- Direct an agent to a *goal* by giving it *instructions*
 - The agent follows the instructions flawlessly and mindlessly
 - The trick is to find the right instructions to match your *intent*
Order of Instructions

- Instructions are given in order (i.e. in a sequence)
 - The 1st instruction is completed, then the 2nd, then the 3rd, ...

- You issue the instructions and the agent follows them
 - When the agent is following your instructions, this is called executing the program, or running the program
Order of Events

- The instructions are programmed *ahead of time*, and then executed *later*
 - The programmer cannot intervene until the program has finished executing or is terminated prematurely
- The instructions must be correct in order for the agent to achieve its goal
Point of View

- Programming requires you to take the agent’s point of view
 - Because it is a sequence of instructions, you must account for everything that happened before (i.e. trace the program)
 - There is usually an indication of where you are currently in the program (sometimes called a program counter)
Limited Instructions

- The number and type of instructions is always limited
 - The agent can only do certain pre-defined actions

- The agent can only execute one instruction at a time
 - Must learn how to specify complex tasks using just these simple actions
Limited Instructions

- Limited instructions is a reality of all computing

- A computer’s hardware/circuitry can only execute a small number of instructions – usually about 100
 - Many are just different versions of the same idea

Amazing Fact:
In theory, a computer with just SIX instruction types could compute all known computations!
Back in Reality

- Programming would be amazingly tedious if you could only use the basic instructions
 - No one would be a programmer no matter how much it paid!
 - The amazing applications we see today would not exist

- The early days of programming were like this
 - Tedious and error-prone
Solution: Functions!

- **Functions** allow us to create new, more complex instructions for our agents
 - Below, F_1 is a function to “process a riser”
 - We can **call** a function by name (F_1) to execute its instructions
Choosing Functions

- The goal is to break down a complex problem into smaller/simpler ones
- Look for common patterns
 - “Process a riser” looks like a useful sub-problem because there are three of them [DEMO]
Choosing Functions

- One possible solution is shown below:
 - 17 commands, 29 calls
Choosing Functions

- Modified solution is shown below:
 - Now F2 is a function to “move to next riser”
 - 16 commands, 31 calls
Choosing Functions

- Yet another solution shown below:
 - F_1 is “traverse steps”, F_2 is “process riser and move to next”
 - 12 commands, 35 calls
Recursion

- Special case where a function calls itself
 - “Conceptual unit” might apply again, immediately
 - More about this later in the course
Peer Instruction Question

Which of the following statements is TRUE?

- Vote at http://PollEv.com/justinh

A. An agent can learn new instructions
B. It is the agent’s fault if the goal is not achieved
C. All ways to decompose a problem into functions are equally good
D. None of the above
E. We’re lost...
Functions Summary

- Functions may seem “obvious” to you, but they are a foundational idea of computer science
 - Abstraction in action!

- Functional abstraction helps us solve problems:
 - Reduce complexity: identify and solve a coherent activity or action (sub-problem) that can be reused
 - Associate these sub-problems with intuitive names
 - Solve the whole problem by composing functions

- There is no “correct” way to abstract!
Looking Forward

- Continue to explore the concept of programming in the realm of Lightbot
 - Now symbolically – not restricted by computer or clicking

- Symbolic Lightbot
 - Start in lab tomorrow, due Friday (3/31)
 - Use handwritten symbols for instructions

- Lightbot Functions
 - Create functions using handwritten symbols

 F.turnaround() R,R.
