
&6(
���

© Larry Snyder, 1999

Procedures -- Abstracting Common
Operations

Algorithms are easier to formulate with a rich
repertoire of operations, but for computers to

execute the resulting programs, the operations
must be simple operations. Procedures allow one

to build powerful operations from simpler parts.

&6(
���

&6(
���

© Larry Snyder, 1999

Functional Abstraction

❖ As noted in Lecture 4, Slide 5, “functional abstraction”
is a powerful tool for algorithmic thinking*

❖ “Functional abstraction” means formulating the basic
operations of a solution to a task in a more abstract
form, i.e. independent of specific details, so that they
may be reused, i.e. applied in many situations

❖ The important points --
✛ Identifying the key operations of a task -- core logic of solution
✛ Generalizing from the specific details -- parameterizing

✛ Formulating the package for reuse -- assigning name, coding

❖ That’s very conceptual; consider some examples

* These concepts are covered in Chapter 4 of Great Ideas in CS

&6(
���

© Larry Snyder, 1999

Procedures Are Everywhere

❖ The result of applying “functional abstraction” to
problems is to create procedures or functions

❖ Examples …
✛ Billing procedure for a company
✛ Appeal procedure for capital crimes

✛ UW Registration Procedure
✛ Qualifying Dependent Test for the IRS
✛ …

❖ Not Examples
✛ Assembly instructions for a toy -- specific to the toy

✛ π -- though a ratio, is just a number, but computing π could be
✛ “Wake-up!” -- a single, immediate command with no reuse

&6(
���

© Larry Snyder, 1999

Abstraction leads to parameterization
❖ Extracting the general process from a solution implies

separating from particular instances …
❏ currentTemp = (5 / 9)*(reading - 32) ‘temp in C

❏ change = (5/9)*(midNiteTemp - 32)

 - (5/9)*(noonTemp - 32) ‘figure diff in C

❖ The essential process in converting Fahrenheit to
Celsius is the differencing and the product

❖ The parameter -- the component that changes from
situation to situation -- is the Fahrenheit temperature

Function ConvertToC (tempF) As Integer

ConvertToC = (5/9)*(tempF - 32)

End Function

…

currentTemp = ConvertToC(reading)

&6(
���

© Larry Snyder, 1999

Functions and Procedures

❖ In computing, procedures perform an operation and
have an effect; functions perform an operation and
return a value

❖ Visual Basic has both, but we concentrate on
procedures because of our programming style
 Procedure Functions
Header key words Sub Name() Function Name() As Type
Trailer key words End Sub End Function

❖ Parameters are listed in parentheses
❖ The main difference is a function can return a value

(whatever is assigned to its name), and so must have
a type for the result given in the header

&6(
���

© Larry Snyder, 1999

Parameters

❖ The names listed in the procedure header are the
formal names used to program the computation in the
body, i.e. procedure definition … they are local to the
procedure, i.e. not known outside of it

❖ It is advisable to give the types of the parameters

Sub setReply (sign As String)

lblAnnounce.Caption = “You are a ” & sign & “!”

End Sub

Procedure name
Parameter name Parameter type

&6(
���

© Larry Snyder, 1999

Using Procedures

❖ Procedures are defined in your form code, at the top
after the “Option Explicit” line

❖ Procedures are invoked, I.e. executed, by being
called using “Call”

❖ The parameter values given in the call are the actual
parameters

n = 1000

x = 4

y = 28

Call sampleProc(n, x + y)

&6(
���

© Larry Snyder, 1999

More On Parameters

❖ Parameters are a channel for passing data to a
procedure … but it can also be a channel for passing
data out
Sub switch (first, second As Integer)

Dim temp As Integer

temp = first

first = second

second = temp

End Sub

…

Call switch (x,y)

❖ This is both beneficial and dangerous

&6(
���

© Larry Snyder, 1999

Keeping Values In

❖ Parameters are normally “called by reference”
❖ Parameters can also be “called by value” which means

that assignments to the (formal) parameters in the
procedure to not affect the (actual) parameters

Sub cvt(degreesC As Integer, ByVal fahren As Integer)

 fahren = fahren - 32

 degreesC = (5/9)*fahren

End Sub

