Digital Representation of Information

FIT
 100

Digital encoding of information means the data is stored in discrete units -- effectively numbers -- and it is contrasted with analog encoding which uses a physical quantity, e.g. charge, varying over a continuous range.

Digital is better.

FIT
 100
 How Digital Works

* The physical world is analog -- sound comes from pushing air with a certain energy at a certain rate, etc
* By measuring a phenomenon one derives a value (number) of the phenomenon at that moment
* Sampling -- taking many measurements at uniform intervals -- gives a series of numbers, the digital form

Digital audio: 44,100 sample/s 2 bytes/sample 2 channels, L\&R 176,400 B/s $635 \mathrm{MB} /$ hour

FIT
 100 Digital Data

* Digital samples capture the basic structure of analog data, but it can be inaccurate due to limited precision

* Or sampling rate

FIT
 100 Two Advantages of Digital Data

* A computer can "compute on" digital data, enhancing it to remove noise, artifacts of imprecision, etc.

* Digital data can be transmitted and replicated exactly
- The numbers are the complete representation of data
- Assuring each number is duplicated or transmitted accurately, means the data is exact

FIT
 100 Some Information Is Discrete

* Keyboard characters can be represented exactly
* Imagine you and your friend are prohibited from talking -- its too noisy? -- and so you use dice to encode the letters and punctuation to communicate

With two dice there are 6×6 $=36$ encodings, not enough for 26 letters, 10 numerals and punctuation. Three dice would give $6 \times 6 \times 6=216$ representations, too many.
So, you dump the numerals.
Order matters: row then col!

FIT
 100 Character Encodings

* Keyboard characters are encoded into a byte or two
* ASCII is one of many encodings of the characters
* A byte (8 bits) permits 256 things to be represented

ASCII, pronounced AS•key, stands for American Standard Code for Information Interchange

$\bullet \cdot$

FIT
 100 Encoding The Number

* Information is often stored by charge or magnetic field
 Schematic diagram of magnetic spots, say on a disk
* Its presence or absence can be detected, leading to a natural association with 1 and 0 to the states, motivating the use of binary numbers

Byte 0
Byte 1
Byte 2
Binary is counting on your fists instead of your fingers

FIT
 100 Decimal and Binary

*	Decimal	Binary	Binary works just
Symbols:	$0,1, \ldots, 9$	0,1	like decimal, except that the base is 2
Base	10	2	
Number xyz	$x \cdot 10^{2}+y \cdot 10^{1}+z \cdot 10^{0}$	$x \cdot 2^{2}+\mathrm{y}$	$22^{1+z \cdot 20}$
Ex: 101	$1 \cdot 10^{2}+0 \cdot 10^{1}+1 \cdot 10^{0}$	$1 \cdot 2^{2}+0$	$2^{1+1} \cdot 2^{0}$
Place Value	101	5	
Powers	1, 10, 100, 1000,	1, 2, 4,	8, 16, 32, 64,
* What binary numbers are: $10000_{2}, 1010_{2}$ and 11112			
Use a subscript to 2^{3} indicate the number base, e.g $5_{10}=101_{2}$ 2^{2}			
			$\because 0$

FIT
 100 Adding Is Familiar

* To add in binary use the same technique (algorithm), but restrict yourself to 0 and $1 \ldots$ everything else works the same way

* Binary is pretty tedious for humans because there are so many digits ... circuitry benefits however because it uses the two states (on/off) efficiently

```
A sequence of b bits can represent 2b}\mathrm{ things, e.g. 0 to 2b-1
```


FIT
 100 Picture Elements (Pixels)

* The phosphor on the screen naturally displays the on/off property of binary
- Suitable for one color (B\&W) video
- The bits in memory are streamed out on the screen in "raster" order, like a standard TV
* For a color display, three (basic) colors of light must be displayed: red, green and blue (RGB)
- Requires three different numbers, e.g. one byte each

- Range of colors is determined by the intensity of each component
- When all three values are at their maximum, the color is white, and when they are at their minimum the color is black

FIT
 100 Color Control

* Select the color palette from an application and play
* Notice when values are equal -- gray results

FIT
 100 Bits As A Medium

* The way that bits represent information is determined by how we interpret the bits ...
$\xrightarrow{0} 1 \begin{array}{llllllllllllllllllllll} \\ & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ \longrightarrow\end{array}$
* As separate bytes these are: 104, 181, 56
* As ASCII these bytes are: h, $\square, 7$
* As a 24 bit integer these bytes are: 6,862,136
* As a color value the bytes are
* The bytes can be interpreted in an unlimited number of ways

FIT
 100 Summary

* Digital representation can be faithfully replicated and transmitted
* It's common to "compute" on a digital representation
* The binary digits (bits) 0 and 1 are a natural way to interpret the presence or absence of a phenomenon
* Binary numbers and arithmetic are like decimal except the are limited to the two numerals 0 and 1
* Bits are bits -- what they mean depends on how we interpret their meaning ... sometimes they are numbers, sometimes letters, sometimes sound, sometimes color, ...

