Various computers will be used in this class, so a quick introduction to their arrangement and networking is useful. Along the way we answer the pressing question: What is the difference between the Internet and the World Wide Web.
Accomplishments To Date …

- You have a UWNetID that gives you access to the UW’s computers, but also access to the World Wide Web … your account is on Dante
 - You have sent email, set up folders, set up an address book
 - You have visited home pages for UW, CSE100, other sites
 - You have tried out a search engine

- Other things you should find out about …
 - Printing is possible for most computer applications … how do you use the printers at OUGL or SUZ labs?
 - In Pine, it is possible to “postpone” a mail message that you are writing -- that is, set it aside to use Pine in other ways and then return to it. Try out “postpone” in your next mail.

Factoid: Pine was developed at UW and is used worldwide
Computers of the Realm...

- We will discuss how computers really work later, but for now think of them as having many forms
 - Embedded -- processor, ROM, channels to sensor/actuators; μ-wave oven
 - Laptop -- processor, RAM, floppy disk, hard disk, LCD; mobility
 - Desk Top -- processor, RAM, floppy, hard disk, CD, monitor; educational and office work
 - Server -- processors (4-32), RAM, many hard disks, CD; services
 - Supercomputer -- processors (16-1K), RAM, hard disks; big science
Class Computers

- FIT100 uses
 - Laptop for lectures
 - Desktop in Collabs, OUGL, SUZ
 - Dante server
- An unconnected computer can only access the data stored locally on its hard disk, run the software stored locally, etc.
- The UW computers are connected, i.e. networked, together allowing us to send email and access the World Wide Web
Networks ...

- Networks connect computers, making them much more useful because
 - Access more information and software
 - Help users communicate, share information
 - Perform services for one another
- UW’s networks ship ~1/2 trillion bytes of data per day
 - Half this information goes to or comes from the Internet
- How are these networks arranged?
Ethernet … It’s Like Conversation

- Think of a dozen students sitting around the dorm telling stories …
 - Everyone listens while one person tells his/her story
 - When the story is finished, there is a pause
 - A person with a story to tell starts talking, listening all the way
 - If no one else started talking too, the person continues
 - If others started talking, he/she stops and waits briefly before trying again

- In Ethernet, only the computers actually communicating listen to the transmission … the others simply wait for the break
The subnetworks of campus interconnect the computers of the UW domain (.washington.edu), which is connected to the Internet via a Gateway.

The Internet is the totality of wires, fibers, satellite links and switches connecting named computers.
How Are Computers Named Logically

- The *logical* way to name computers is using domains
 - All educational institutions .edu
 - U Dub .washington.edu
 - CSE .cs.washington.edu
 - Me spiff.cs.washington.edu

- This scheme is hierarchical
 - Easier to remember names
 - Names are associated with like units
 - No limit to size or organizational depth

Country Pairs
- .ca -- Canada
- .uk -- United Kingdom
- .fr -- France
- .de -- Germany as in Deutschland
- .es -- Spain as in España
- .us -- United States

© Copyright, Larry Snyder, 1999
The physical way to name computers is using an Internet protocol address, or IP address:

- spiff.cs.washington.edu’s IP address is: 128.95.1.207
- cs.washington.edu’s IP address: 128.95.1.4
- washington.edu’s IP address: 140.142.15.163

The domain name system (DNS) associates human readable names with the physical IP addresses for use by the computers and routers of the Internet.
An important concept ...

- In computing it is common to separate the *logical* idea of something -- the way you think about it -- from the *physical* implementation -- how it’s actually built.
- This is called a *physical / logical separation*.
- In networking, the domain names make up our logical network, a hierarchical arrangement of names that tell us associations: cs.washington.edu.
- The computers actually use physical addresses.
- The DNS enables the separation by making the correspondence between the two.
How Is Information Sent?

- Sending information over the Internet works like this:
- Imagine sending the novel you wrote from Tahiti where you live to New York City where your publisher is using only postcards

<table>
<thead>
<tr>
<th>#1</th>
<th>Great Books</th>
</tr>
</thead>
<tbody>
<tr>
<td>It was a dark and stormy night. Rain pelted the glass as Sir Bulwer-Lytton dozed by the dying fire.</td>
<td>1830 1st Ave</td>
</tr>
<tr>
<td></td>
<td>NYC NY</td>
</tr>
<tr>
<td></td>
<td>USA</td>
</tr>
</tbody>
</table>

© Copyright, Larry Snyder, 1999
The Internet Protocol

How is the information sent?

- Information -- email, web pages, phone calls, everything sent over the internet -- is broken up into small units, called packets.
- Packets contain an IP address, a sequence number and some actual information, a part of the whole message.
- This scheme is called the Transmission Control Protocol and Internet Protocol, or TCP/IP.
- The packets are sent independently, usually taking different routes, and reassembled at the destination to reconstruct the original message.

| address | data |
World Wide Web

- The world wide web is composed of those computers, called web servers, capable of sending information to your browser, e.g. Netscape or IE
- In most domains the computer that is the web server is called “www”, e.g. www.washington.edu
 - But, a web server can have any name … your pages will be served by students.washington.edu
 - The actual pages will be stored somewhere else, e.g. Dante
- There are different ways to connect to these servers
 - Hyper-text transfer protocol, http for web pages
 - File transfer protocol, ftp for files of information

Factoid: “WWW” is not short for “World Wide Web”
Web Pages

- Web pages are just text files containing instructions to your browser on how to lay out the web page
 - Web pages can be created with a text editor
 - Web pages can be created with special tools, e.g., Adobe Page Mill
- The Web page instructions are written in a special language, hyper-text mark-up language, HTML
- It is possible to see the HTML that is producing the page you are looking at by selecting “source” from the View menu in your browser
HTML From CSE100 Home Page

<HTML>
<HEAD><META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=windows-1252"><META NAME="Generator" CONTENT="Microsoft Word 97"> <TITLE>Home Page</TITLE></HEAD><BODY LINK="#0000ff" VLINK="#800080" BGCOLOR="#ffffff">
<DL>
 <DT></DT>
</DL>
<TABLE CELLSPACING=0 BORDER=0 CELLPADDING=10 WIDTH=702>
 <TR><TD WIDTH="21%" VALIGN="TOP" ROWSPAN=4 BGCOLOR="#c0c0c0">
 <P><I>Announcements</I></P>
 <P>CSE100Vision</P>
 <P>Syllabus </P>
 <P>Class Notes</P>
 <P>Assignments </P>
 <P>Exams & Tests </P>
 <P>E-mail Announcement Archive</P>
<hr>
 <P><I>Caution: Not for human consumption</I></P>
</TD></TR>
</TABLE>
</BODY></HTML>