Binary Search -- A Fundamental Algorithm

Binary search is a clever, though common sense way to search an ordered set of items. Queries are made, called *probes*, asking whether the desired item is smaller or larger. If the probe is chosen in the middle of the sequence, 1/2 of the possibilities must be eliminated with any answer. Now the details...
Reminder … Algorithm vs Program

- The process just described on the title slide -- suitably embellished -- is the binary search algorithm … the idea given abstractly
- A program for binary search -- your goal -- will encode the algorithm for a specific situation, in a specific language, with specific assumptions

Today’s Topics:
- Analyze the binary search algorithm
- Review the Day Finder application
- Reason through the logic of using binary search in the Day Finder context
Understanding the problem …

Inputs: The end points, \((lo, hi)\), of an ordered sequence.
Answers to a series of questions.

Outputs: A selected item.

How the inputs are transformed to the outputs:
A series of questions is posed of the form: “Is the desired item after item \(x\)?”

So that the \(x^{th}\) item is chosen to be midway in the interval.
If the reply is \(yes\), the new interval is \((next ~after ~x, ~hi)\).
If the reply is \(no\), the new interval is \((lo, x)\).
The output is the item when the interval contains only a single item.
Analyzing Properties Of Solution

- End points … inclusive
- Before/after questions … stay with one form
- Probing odd-length and even-length intervals (\)
- New interval’s endpoints … one is kept, one changes
- Termination … when is it over?

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
After M? N
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
After G? Y
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
After J? Y
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
After L? N
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
After K? Y
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
The letter is L
Guessing Days In A Sign

- The “complicating” problem with searching for a birthday in a sign, is that the signs span parts of two months.
- Not to worry … logically extend the starting month.

Days in June 30
Day in July + 22
Day in exJune 52

The interval to be searched is 21 through 52.
Transforming Probe To A Date

- The size of the interval is: \((52 - 21) = 31\)
- The midpoint of the interval is: \(31 \div 2 = 15\)
- The probe, low end + midpoint: \(21 + 15 = 36\)
- What day is June 36?

![Day Find window showing Cancer and born between June 21 and July 22.

You were born between June 21 and July 22.

Were you born after July 6?](day-find-window.png)
Guess? What?

- What information is needed by the guess procedure?

![Day Find window](image)

Enter Your Sign, Please

- Aries
- Leo
- Sagittarius
- Taurus
- Virgo
- Capricorn
- Gemini
- Libra
- Aquarius
- Cancer
- Scorpio
- Pisces

You were born between June 21 and July 22.

Were you born after July 6?
Using Binary Search In Day Finder

- Inherit the initial configuration from Zodiac
- The guess Procedure asks one probe at a time ...
- When is Guess called?
Overall Data Flow ...

- Where do the initial values come from?
 - After the Zodiac computation, \(\text{loEnd} \) and \(\text{hiEnd} \) can be set

- When are these values used?
 - In the guess procedure to compute the midPt for the guess

- How are these values updated?
 - In the yes and no button event handlers
 - In the case of “yes,” which end moves?
 - \(\text{loEnd} = \text{midPt} + 1 \)
 - In the case of “no”, which end moves?
 - \(\text{hiEnd} = \text{midPt} \)
 - Why are the two setting not “opposite” one another?

- When the does the questioning terminate?
 - When the end points are equal
Structure Of Solution

Variables:
- Additional variable declarations
- Inherit from Zodiac

Procedures:
- Initialize, make first guess
- Revise interval, make guess
- Formulate guess