
Database Operations

Chapter 16

2

Operations on Tables

� A database is a collection of tables

� Operations on tables produce tables
� The questions we ask of a database are answered with a

whole table

� Users specify what they want to know and the
database software finds it

� Operations specified using SQL (Structured Query
Language)
� SQL is a language for querying and modifying data and

managing databases

3

Example Database

4

Select

� Takes rows from one table to create a new table

� Specify the table from which rows are to be taken,
and the test for selection

� Test is applied to each row of the table to determine
if it should be included in result table

� Test uses attribute names, constants, and relational
operators

� If the test is true for a given row, the row is included
in the result table

5

Select

� Syntax:
SELECT *
FROM<table>
WHERE<test>

� The asterisk (*) means "anything"

� Example:
SELECT *
FROM Nations
WHERE Interest = 'Beach'

6

Select

SELECT *
FROM Nations
WHERE Interest = 'Beach'

7

Project

� Builds a new table from the columns of an
existing table

� Specify name of existing table and the
columns (field names) to be included in the
new table

� The new table will have the same number of
rows as the original table, unless …
� … the new table eliminates a key field. Duplicate

rows in the new table are eliminated.

8

Project

� Syntax:

SELECT<field list>
FROM<table>

� Example:
SELECT Name, Domain, Interest
FROM Nations

9

Project

SELECT Name, Domain, Interest

FROM Nations

10

Select And Project

� Can use Select and Project operations
together to "trim" base tables to keep only
some of the rows and some of the columns

� Example:
SELECT Name, Domain, Latitude
FROM Nations
WHERE Latitude >= 60 AND NS = 'N'

11

Select And Project Results

SELECT Name, Domain, Latitude
FROM Nations
WHERE Latitude >= 60 AND NS = 'N'

12

Exercise

� What is the capital of countries whose
"interest" is "history" or "beach"?

� Solution:
SELECT Capital
FROM Nations
WHERE Interest = 'History'

OR Interest = 'Beach'

13

Union

� Combines two tables (that have the same set
of attributes)

� Syntax:
<table1>
UNION
<table2>

14

Union Results

SELECT *
FROM Nations
WHERE Lat >= 60 AND NS = 'N'
UNION
SELECT *
FROM Nations
WHERE Lat >= 45 AND NS = 'S'

15

Product

� Creates a super table with all fields from both
tables

� Puts the rows together
� Each row of Table 2 is appended to each row of

Table 1

� General syntax:
SELECT *
FROM <table1>, <table2>

16

Another Table

17

Product Results

SELECT *
FROM Nations, Travelers

18

Join

� Combines two tables, like the Product Operation,
but doesn't necessarily produce all pairings

� Join operation:
� Table1 Table2 On Match

� Match is a comparison test involving fields from
each table (Table.Field)

� A match for a row from each table produces a result
row that is their concatenation

19

Join

� General syntax:
SELECT *
FROM <table1> INNER JOIN <table2>
ON <table1>. <field> = <table2>. <field>

� Can be written with product operation:
SELECT *
FROM <table1>, <table2>
WHERE <table1>. <field> = <table2>. <field>

20

Join Applied

Master

Northern

21

Join Applied

� For each row in one table, locate a row (or
rows) in the other table with the same value
in the common field
� If found, combine the two.
� If not found, look up the next row.

� Possible to join using any relational operator,
not just = (equality) to compare fields

22

Exercise

� Suppose you have the
following tables:
performers, events, and
venues

� Write a query to find
what dates the
Paramount is booked.

23

Solution

SELECT PerformanceDate
FROM events INNER JOIN venues
ON events.VenueID = venues.ID
WHERE Venue = 'Paramount Theater'

24

Exercise

� Write a query to find
which performers are
playing at the
Paramount and when.

25

Solution

SELECT Performer, PerformanceDate
FROM (events INNER JOIN venues

ON events.VenueID = venues.ID)
INNER JOIN performers
ON events.PerformerID = performers.ID

WHERE Venue = 'Paramount Theater'

