## Test Your Tech

Crackers and cookies are:
A. Bytes to share with friends.
B. The best minor league baseball team of all time and their cheerleaders.
C. Hackers who attempt to break a program (crackers) and data stored on your computer by a Web server (cookies).

## Test Your Tech

FIT100
Crackers and cookies are:
A. Bytes to share with friends.
B. The best minor league baseball team of all time and their cheerleaders.
C. Hackers who attempt to break a program (crackers) and data stored on your computer by a Web server (cookies).


Announcements

- Due Dates
* Today, 5pm
- Lab 12
* Monday, March 17, 11pm
- Project 3B
- Lab 14
- Labs this week
* Tuesday-Wednesday
- Lab 14 on Security (required)
* Thursday-Friday
- Quiz on Chapter 17
- TA evaluations
- Project 3B work time
- Pickup Reflection paper 3

| FIT100 |
| :---: | :---: |
| • La bs this week |
| * Tuesday-Wednesday |
| • Lab 14 on Security (required) |
| * Thursday-Friday |
| • Quiz on Chapter 17 |
| •TA evaluations |
| • Project 3B work time |
| • Pick up Reflection paper 3 |
|  |

Announcements
FIT100

- Last week of class!
- No final exam!

Announcements

- Lecture this week
* Today
- Finish up SQL demonstrations
- Security
* Wednesday
- Do computers think?
* Friday
- Reflection paper 4
- Wrap-up
- Course evaluations for lecture/instructor



## Demonstrations (continued)

## MORE SQLEXAMPIES



## Queries

## Queries

## Queries

FIT100
11. List all the events involving track and students who have eamed at least 5 points.
12. List all students who have ea med between 2 and 9 points sorted with highest points first.
13. Show a listing of the average number of points won by students in each sport.



Queries
13. What events, if any, has o participated in?


Queries
FIT100
14. Show a listing of the average number of points won by students in each sport.

## Queries

FIT100
number of events entered by each athlete but do not show the cases where only one event was entered.


## Queries

15. a. Start by listing the athletes' namesand the number of events entered by each athlete.


Queries
15. a. Start by listing the athletes' names and the number of events entered by each athlete.


## Encryption And Decryption

- Encryption Terminology
* Encryption: Transform representation so it is no longer understandable
* Cryptosystem: A combination of encryption and decryption methods
* Cleartext or Pla intext: Information before encryption
* Ciphertext: Information in encrypted form
* One-way cipher: Encryption system that cannot be easily reversed (used forpasswords)
* Decryption: Reversing encryption process


Figure 13.2 Schematic diagram of a cryptosystem. Using a key $K_{\text {SA }}$ known only to them, the sender encrypts the cleartext information to produce a cipher text, and the receiver decrypts the cipher text to recover the cleartext.

13-25


## XOR: An Enc ryption Operation

- Exc lusive OR (XOR): Interesting way to apply a key to cleartext
- Combines two bits by rule: If the bits are the same, the result is 0 ; if the bits are different, the result is 1
- XOR is its own inverse (to decrypt back to original text)

13-26


FIT100


13-28

## Breaking the Code

FIT100

- Longertext is easierto decode
* Notice what bit sequences show up frequently
* Knowledge of most frequent letters in the cleartext language
- e is the most common letter in English
- Smarter byte-for-byte substitutions
* Group more than two bytes
* Be sure not to exchange the key over unsecured connection
13-29


## Public Key Cryptosystems

FIT100
who want to receive information securely publish a key that senders should use to encrypt messages

- Key is chosen so only receivercan decode



## Code Cracker's Problem

- How is it secure when the key is published?
- All that is sent is the rema inder
* Bits left over from dividing manipulated data by the key
- So how can the receiver decrypt?



## Encrypting a Message

FIT100

- Divide cleartext into blocks, cube the blocks, divide them by the public key, and transmit the rema inders from the divisions



## Summa rizing the RSA System

- Three steps:
* Publishing
* Encrypting
* Decrypting
- Aslong asp, q, a nd sare kept secret, code can't be cracked
* If the key is large enough, factoring to find $p$ and q can't be done in any reasonable a mount of time even by software

13-35

## The Decryption Method

- Compute the quantity $s=(1 / 3)(2(p-1)(q-$
- If the cipher text numbers $C$ are each raised to the spower, $\mathrm{C}^{\text {s }}$, and divided by the key $K_{R}$, the remainders are the cleartext
- That is for some quotient c that we don't care about:
${ }_{13.34} * C^{S}=K_{R} * C+T$

1)     + 2) 

## Public Key Cryptosystem

- Relieson prime numbers
- Any numbercan be factored into primes in only one way
- Choosing a Key:
* Key has special properties
- Must be the product of two different prime numbers, $p$ and $q$
- $\mathrm{K}_{\mathrm{R}}=\mathrm{pq}$
- p and q must be about 64 or 65 digits long to
produce a 129-digit public key
- $p$ and $q$ must also be 2 greater than a multiple of 3

13-32

## CHIC FIT100

## Strong Encryption Techniques

- A communicating party can use the technology to protect their communication so no one else can read it, period
- Govemment agencies would like this technology kept out of the hands of "bad guys"
- What if cryptography software vendors had to give govemment a way to break
${ }^{13.36}$ such codes?


## Strong Enc ryption Techniques

- Tra pdoorTechnique:
* Way to bypass security while software is encrypting the cleartext. Send cleartext to la w-enforcement offic ials when cipher text is sent.
- Key escrow:
* Require software to register key with a third party, who holds it in confidence. If there is a need to break the code, the third party providesthe key.
- These two schemescould be abused
- Precautions a ga inst data disa sters include backups a nd system redundancy (having a hot spare up and running)


## Redundancy Is <br> Very, Very, Very Good

## Backing Up a Personal Computer

- How and What to Back Up
* You can buy automatic backup software that writes to zip drive or writeable CD
* Formanual backups, you do not have to backup data that
- Can be re-created from some permanent source, like software
- Wassaved before but has not changed
- You don't care about
- All data since last backup (full or partial) will be ${ }_{13-39}$ Ost


## Recovering Deleted

## Information

- Backupsalso protect from accidental deletions
- Can save evidence of crime or other ina ppropriate beha vior
- Remember that two copies of email are produced when sender hits send-one in sent mail file and one somewhere else, which the sender probably can't delete

