FIT100

Test Your Tech

Crackers and cookies are:

- A. Bytes to share with friends.
- B. The best minor league baseball team of all time and their cheerleaders.
- C. Hackers who attempt to break a program (crackers) and data stored on your computer by a Web server (cookies).

Test Your Tech

2

Crackers and cookies are:

- A. Bytes to share with friends.
- B. The best minor league baseball team of all time and their cheerleaders.
- C. Hackers who attempt to break a program (crackers) and data stored on your computer by a Web server (cookies).

Announcements

1

- Due Dates
 - Today, 5pm
 Lab 12
 - Monday, March 17, 11pm
 Project 3B
 - Lab 14

Announcements

- Last week of class!
- No final exam!

Announcements

• Labs this week

- * Tuesday-Wednesday
- Lab 14 on Security (required)
- Thursday-Friday
 - Quiz on Chapter 17
 - TA evaluations
 - Project 3B work time
 - Pick up Reflection paper 3

Announcements

- Lecture this week
 - * Today
 - Finish up SQL demonstrations
 - Security
 - * Wednesday
 - Do computers think?
 - * Friday
 - Reflection paper 4
 - Wrap-up
 - Course evaluations for lecture/instructor


```
Queries
```

```
12. List all students who have earned
between 2 and 9 points sorted with
highest points first.
```


Queries

13. Show a listing of the average number of points won by students in each sport.

FIT100

Queries

13. What events, if any, has Jo participated in?

- encrypt them • Key is 0001 0111 0010 1101
- They use XOR encryption
- First write down ASCII representation of the letters in pairs
- · XOR each resulting 16-bit sequence with their key
- If any bit sequence is XORed with another bit sequence and the result is XORed again with the same key, the result is the original bit sequence
- · It makes no difference if the key is on the left or right

13-27

FIT100

Code Cracker's Problem

- How is it secure when the key is published?
- All that is sent is the remainder
- Bits left over from dividing manipulated data by the key
- So how can the receiver decrypt?

13-31

13-33

Encrypting a Message

• Divide cleartext into blocks, cube the blocks, divide them by the public key, and transmit the remainders from the divisions

The Decryption Method

- Compute the quantity s = (1/3)(2(p-1)(q-1) + 1)
- If the cipher text numbers C are each raised to the s power, Cs, and divided by the key $K_{R'}$ the remainders are the cleartext
- That is for some quotient c that we don't care about:

 $_{13-34} * C^{s} = K_{R} * C + T$

Strong Encryption Techniques

- A communicating party can use the technology to protect their communication so no one else can read it, period
- Government agencies would like this technology kept out of the hands of "bad guys"
- What if cryptography software vendors had to give government a way to break ¹³³⁵ such codes?

Encryption Techniques

- Trapdoor Technique:
 - * Way to bypass security while software is encrypting the cleartext. Send cleartext to law-enforcement officials when cipher text is sent.
- Key escrow:
 - Require software to register key with a third party, who holds it in confidence. If there is a need to break the code, the third party provides the key.
- These two schemes could be abused

Redundancy Is Very, Very, Very Good

• Precautions against data disasters include backups and system redundancy (having a hot spare up and running)

13-38

- Create partial backups—copies of changes since last full backup
- After disaster, start by installing the last full backup copy
- Re-create state of system by making changes stored in partial backups, in order
- All data since last backup (full or partial) will be lost
- 13-39

Recovering Deleted Information

- Backups also protect from accidental deletions
- Can save evidence of crime or other inappropriate behavior
- Remember that two copies of email are produced when sender hits send—one in sent mail file and one somewhere else, which the sender
 probably can't delete