

Crackers and cookies are:
A. Bytes to share with friends.
B. The best minorleague baseball team of all time and their cheerleaders.
C. Hackers who attempt to break a program (crackers) and data stored on your computer by a Web server (cookies).


Crackers and cookies are:
A. Bytes to share with friends.
B. The best minorleague baseball team of all time and their cheerleaders.
C. Hackers who attempt to break a program (crackers) and data stored on your computer by a Web server (cookies).


- Due Dates
* Today, 5pm
- Lab 12
* Monday, March 17, 11pm
- Project 3B
- Lab 14

- Last week of c lass!
- No final exam!

- La bs this week
* Tuesday-Wednesday
- Lab 14 on Sec urity (required)
* Thursda y-Friday
- Quiz on Chapter 17
- TA evaluations
- Project 3B work time
- Pick up Reflection paper 3

- Lecture this week
* Today
- Finish up SQL demonstrations
- Sec unity
* Wednesday
- Do computers think?
* Friday
- Reflection paper 4
- Wrap-up
- Course evaluations for lecture/instructor


Demonstrations (continued)

11. List all the events involving track and students who have eamed at least 5 points.


## 11. List all the events involving track a nd students who have eamed at least 5

 points.

12. List all students who have ea med between 2 and 9 points sorted with hig hest points first.


## 12. List all students who ha ve ea med between 2 and 9 points with highest

 points listed first.```
Student_Athletes
    *
    % student_id
        first_name
        middle_name
        last_name
        gender
        date_of_birth
        points_awarded_to_date
```

| Field: <br> Table: <br> Sort: <br> Show: riteria: or: | last_name | first_name | points_awarded_to_d |
| :---: | :---: | :---: | :---: |
|  | Student_Athletes | Student_Athletes | Student_Athletes |
|  |  |  | Descending |
|  | V | V | V |
|  |  |  | $>2$ And $<9$ |
|  |  |  |  |


13. Show a listing of the average number of points won by students in each sport.

13. What events, if a ny, hasJ o partic ipated in?


## 13. What events, if a ny, has Jo partic ipated in?




14. Show a listing of the average number of points won by students in each sport.


15. List the a thletes' na mes a nd the number of events entered by each athlete but do not show the cases where only one event was entered.

15. a. Sta rt by listing the athletes' names and the number of events entered by each a thlete.


## 15. a. Sta rt by listing the a thletes' names and the number of events entered by each a thlete.




15. b. List the a thletes' na mes a nd the number of events entered by each athlete but do not show the cases where only one event was entered.


## 15．b．



4 㘳




- Encryption

- Enc ryption Terminology
* Encryption: Transform representation so it is no longer understandable
* Cryptosystem: A combination of encryption and decryption methods
* Cleartext or Pla intext: Information before encryption
* Cipher text: Information in encrypted form
* One-way cipher: Enc ryption system that cannot be easily reversed (used for passwords)
* Decryption: Reversing encryption process


Figure 13.2 Schematic diagram of a cryptosystem. Using a key $K_{S R}$ known only to them, the sender encrypts the cleartext information to produce a cipher text, and the receiver decrypts the cipher text to recover the cleartext.


- Exc lusive OR (XOR): Interesting way to apply a key to cleartext
- Combines two bits by rule: If the bits are the same, the result is 0 ; if the bits a re different, the result is 1
- XOR is its own inverse (to decrypt back to original text)

- Two students writing messages to each other decide to encrypt them
- Key is 0001011100101101
- They use XOR encryption
- First write down ASC II representa tion of the letters in pairs
- XOR each resulting 16-bit sequence with their key
- If a ny bit sequence is XORed with a nother bit sequence a nd the result is XORed a ga in with the sa me key, the result is the original bit sequence
- It makes no difference if the key is on the left or right


|  | Cleartext |  |  |  | Key |  |  |  |  |  | Cipher Text |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Me | 0100 | 1101 | 0110 | 0101 |  |  |  |  |  |  | 0101 | 1010 | 0100 | 1000 | ZH |
| et | 0110 | 0101 | 0111 | 0100 |  |  |  |  |  |  | 0111 | 0010 | 0101 | 1001 | rY |
| @1 | 0100 | 0000 | 0011 | 0001 |  |  |  |  |  |  | 0101 | 0111 | 0001 | 1100 | $\mathrm{W}_{\text {s }}$ |
| 2: | 0011 | 0010 | 0011 | 1010 | $\oplus$ | 0001 | 011 | 0010 | 1101 | = | 0010 | 0101 | 0001 | 0111 | ${ }_{8}^{8 \mathrm{~B}_{5}}$ |
| 15 | 0011 | 0001 | 0011 | 0101 |  |  |  |  |  |  | 0010 | 0110 | 0001 | 1000 | $\&_{\text {c }}^{\text {c }}$ |
| @J | 0100 | 0000 | 0100 | 1010 |  |  |  |  |  |  | 0101 | 0111 | 0110 | 0111 | Wg |
| oe | 0110 | 1111 | 0110 | 0101 |  |  |  |  |  |  | 0111 | 1000 | 0100 | 1000 | xH |
| 's | 0010 | 0111 | 0111 | 0010 |  |  |  |  |  |  | 0011 | 0000 | 0101 | 1111 | 0 |

Figure 13.3 Encrypting the cleartext Meet@12:15@Joe's, using ASCII encoding of letter pairs, the key 000101110010 1101, and the operation of exclusive OR to produce the cipher text $\mathrm{ZHrYW}{ }_{s}{ }^{\mathrm{P}} \mathrm{o}^{\mathrm{E}}{ }_{\Sigma} \&^{\mathrm{c}} \mathrm{N}_{\mathrm{N}} \mathrm{WgxHO}$. (Decryption works in the opposite direction, as if the " $\oplus$ " and " $=$ " symbols of the figure were exchanged.)


- Longertext is easierto decode
* Notice what bit sequences show up frequently
* Knowledge of most frequent letters in the cleartext language
- e is the most common letter in English
- Smarter byte-for-byte substitutions
* Group more than two bytes
* Be sure not to exchange the key over unsecured connection
 publish a key that senders should use to encrypt messages
- Key is chosen so only receiver can decode


Point where information is transmitted or stored; could
be snooped here
${ }^{13-3}$ Figure 13.4 Public key cryptosystem. The sender uses the receiver's public key $K_{R}$ to encrypt the cleartext, and only the receiver is able to decrypt it to recover the cleartext.


- How is it secure when the key is published?
- All that is sent is the remainder
* Bits left over from dividing manipulated data by the key
- So how can the rec eiver decrypt?

- Relies on prime numbers
- Any number can be factored into primes in only one way
- Choosing a Key:
* Key has special properties
- Must be the product of two different prime numbers, p and q
$-K_{R}=p q$
- $p$ and $q$ must be about 64 or 65 digits long to produce a 129-digit public key
- $p$ and $q$ must also be 2 greater than a multiple of 3

- Divide cleartext into blocks, cube the blocks, divide them by the public key, a nd transmit the rema inders from the divisions

- Compute the qua ntity $s=(1 / 3)(2(p-1)(q-$ 1) +1 )
- If the cipher text numbers C are each raised to the spower, Cs, a nd divided by the key $K_{R}$, the rema inders are the cleartext
- That is for some quotient c that we don't care about:
${ }_{13-34} * C^{s}=K_{R} * C+T$

- Three steps:
* Publishing
* Encrypting
* Decrypting
- Aslong asp, q, a nd sare kept secret, code can't be cracked
* If the key is large enough, factoring to find p and q can't be done in any reasonable a mount of time even by software

- A communic ating party can use the technology to protect their communication so no one else can read it, period
- Govemment agencies would like this tec hnology kept out of the hands of "bad guys"
- What if c ryptography softwa re vendors had to give govemment a way to break ${ }^{133}$ such codes?

- Trapdoor Tec hnique:
* Way to bypass security while software is encrypting the cleartext. Send cleartext to la w-enforc ement offic ials when cipher text is sent.
- Key esc row:
* Require software to register key with a third party, who holds it in confidence. If there is a need to break the code, the third party provides the key.
- These two schemes could be abused

- Prec autions a ga inst data disa sters include backups and system redundancy (having a hot spare up and running)

- Keep a full copy of everything written on the system a s of some date a nd time-full backup
- Create partial backups-copies of changes since last full backup
- After disa ster, sta rt by insta lling the last full backup copy
- Re-c reate state of system by making changes stored in partial backups, in order
- All data since last backup (full or partial) will be 13-39 ${ }^{\text {lost }}$

- How and What to Back Up
* You can buy automatic backup software that writes to zip drive or writeable CD
* For ma nual backups, you do not have to backup data that
- Can be re-created from some permanent source, like software
- Wassaved before but has not changed
- You don't care about

- Backups also protect from accidental deletions
- Can save evidence of crime or other ina ppropriate beha vior
- Remember that two copies of email are produced when sender hits send-one in sent mail file and one somewhere else, which the sender ${ }_{134}$ probably can't delete

