Why is programming fun?

Fourth is the joy of always learning, which springs from the non-repeating nature of the task. In one way or another the problem is ever new, and its solver learns something: sometimes practical, sometimes theoretical, and sometimes both.

Announcements

- **Project 2**
 - Take a story
 - Public domain or you wrote it
 - Take user input from a form
 - Replace words in the story with words supplied by the user
Announcements

• Project 2
 * Read all the instructions, including the rubrics at the end, before you begin!
 * Don’t just start blazing away!
 * The section just before the rubrics lists the deliverables for Project 2A and for Project 2B
Solving large problems is tough -- but approach them logically and you will succeed
Problem Solving

Large problems share many properties:

• They are daunting -- there’s so much to do!
• We don’t know where to begin
• Not sure we know all of the tasks that must be done to produce a solution
• Not sure we know how to do all of the parts -- new knowledge may be required
• Not sure it is within our capability -- maybe an expert is needed

Assume you will succeed; not trying concedes defeat
Problem Decomposition

“Divide and conquer” is a political strategy, military strategy, & IT strategy

Top-level Plan--(Project 2A.2)

1. Describe (in any language) a series of steps that produce a solution
2. For each step, solve it or decompose further
3. For steps needing decomposition, repeat 2
4. Assemble solutions and test correctness
5. When solution fully assembled, evaluate
More Specifics

We will step through the process, using Project 2 as an example:

- Problem decomposition is mostly common sense
- Process is not algorithmic
- Problem decomposition is to help you, so apply it as needed
1. Give Steps to a Solution

Specify (in any language) a series of steps that produce a solution

- For a huge problem the steps may at first be vague, but they can be (& must be) made more precise as the whole picture emerges
- The goal is an algorithm(s), so …
- List & describe the inputs
- List & describe the outputs
- Be guided in figuring out the steps by the need to transform the inputs into the outputs
 - Correct answers, student’s choices, total score
What Are Steps for Quiz?

Enter your first name:

1. What is the Seattle Football team?

2. Where do they play?

3. How many games a year do they play?

4. How many players are on the team?
Steps

• Student as Teacher—Creating an Online Quiz (150 points)
 * 2A: Creating the GUI in HTML (25 points)
 * 2B: Scoring the Quiz (125 points)
Project 2A

• 2A.1 Creating the GUI
 • Write questions and answers
 • Choose a subject you know well
 • Create the GUI in HTML
 • Eight fill-in-the-blank questions
 • Add mouseover effects (rollover) to an image

• 2A.2
 • Write a planning document
 • Plan your coding strategy
 • Write in narrative form what your coding will do for the entire project
Project 2B

• Part 2B: Scoring the Quiz
 * Score eight fill-in-the-blanks from 2A
 * Write and score two multiple-choice questions
 • One with one answer
 • One with several answers
 * Score the quiz with JavaScript
 * Print the total score to the page
 * Depending on score, a new page opens (Study more! or Good work!)
 * Write a reflection paper on the project
What Are Steps for Quiz?

Project 2A

- Build basic GUI
 - With 8 textboxes for each answer
 - Add questions to each textbox
 - Add a submit button
 - Add an image with a rollover (mouseover event)
 - Add any instructions needed by the user
 - Primp design & make cool looking

- Write planning document
 - Decompose the coding for Project 2B
 - Write a narrative explaining your coding strategy
Steps for Quiz

• Part 2B: Scoring the Quiz
 * Create an array of correct answers
 * Create a variable to hold the student’s score
 * Write a function to compare the student’s answer with the correct answer.
 * Create multiple-choice questions
 • Radio buttons for one answer
 • Checkboxes for several answers
 * Create 2 HTML pages:
 • Study More!
 • Good Work!
PERT is Program Evaluation & Review Technique ... developed in 1950s

- Diagrams show the dependencies visually
2&3. Solve or Decompose

For each step, solve it or decompose it further, i.e. apply same technique

- Most “top level” steps can’t be brained out, and need further decomposition
- “Top level” steps often seem huge, too
- The technique allows one to concentrate on only one problem at a time
- As before, focus on inputs, outputs, process to transform inputs into outputs

Often, “last” decomposition done during solution
Inputs & Outputs

- Inputs
 - Array of quiz answers
 - User input from form
 - Click event on submit button
 - Mouseover on rollover image

- Outputs
 - Final score
 - Comment pages
 - Good job!
 - Study More!
 - Change bgcolor based on score
2&3. Solve or Decompose

“Code compare functions”

- Build onSubmit event handler
- Access student answers from form inputs
- Compare correct answers in array with student answers from form

Need to learn about
- accessing elements in array
- accessing student answers from form inputs
4. Assemble Parts

Assemble Solutions & Test Correctness

- Putting solutions together can be tough because of different assumptions made while solving the parts -- it always happens.
- When working alone it is common to combine parts along the way and to test continuously.
- Because of the need to test, pick a good order to solve the problems.

Getting something working quickly is best.
4. Assemble Parts

Project 2 solves & assembles parts together in a ‘good’ order

1. What is the Seattle Football team?

2. Where do they play?

3. How many games a year do they play?

9. What position is a played on offense?
 - A: Quarterback
 - B: Wing
 - C: Center
 - D: Tackle

10. How can the Seahawks make it to the Super Bowl?
4. Assemble Parts

Project 2 solves & assembles parts together in a ‘good’ order

- Most parts of Project 2 use the developing solution for testing -- that’s ‘good’
- Notice adding steps to test a solution may be wise
- Parts mismatch is common problem, but not in Project 2
Large problems can be solved by the ‘divide and conquer’ technique

- The process is “top down” -- get a top level solution even if it is vague, imprecise
- Whenever you cannot produce a solution to a step directly, reapply the technique
- The start and first several steps will be daunting … but the process works!
- Get part of solution working quickly if possible
Reflection Paper

• Write for ten minutes on this topic:
 * Compare and contrast the use of HTML and JavaScript for web publishing