

Progra mming

- Why is programming fun?
- First is the sheer joy of making things. As the child delights in his mud pie, so the a dult enjoys build ing things, especia lly things of his own design. I think this delight must be an image of God's delight in making things, a delight shown in the distinctness and newness of each leaf and each snowflake.

Source: Frederick P. Brooks, Jr. The Mythical Man-Month: Essays on Software Engineering.

Iteration: Play It Again, Sam

- The process of repetition:

Homework
FIT100

- By today you should have read
* Chapters 20 and 21 in Fluency
* looping through a series of statements to repeat them

The for Loop Basic Syntax FIT100
 for (<initialization>; <continuation>; <next iteration>) \{
 <sta tement list>
]

Again and again, and again
Repetition is good
FOR LOOPS

Text that is not in metabrackets $<$ must be given literally

- The whole sequence of statements in the statement list is performed foreach iteration
* Computercompletesthe whole statement sequence of the statement list>before beginning the next

21-6 iteration

The Iteration Variable

- Control specific ation: the three operations in the parentheses of the for loop
* Control the number of times the loop iterates
* by using an iteration varia ble (must be declared)

21-7

The Iteration Variable

 (cont'd)
- Example:

for (j = 1 ; j <= 3 ; j = j + 1) \{
<statement list>
\}

- Here's what happens:
* The first operation is the <initialization>
- Sets the iteration variable's value for the first iteration of the loop. Done only once
* The next operation is <continuation>
- Test. If the test has a false outcome, the <statement list> is skipped.
If the test has a true outcome, the <statement list> is performed. When the statements are complete, the
* <next iteration>operation is performed

21-9 - Repeats with the continuation test, performs same sequence of steps.

J ava Script Rules for for Loops
(cont'd)

- The World-Famous Iteration
* J avaScript uses the same for loop statement as other programming languages, so thousands of loops with this struc ture are written every day:
for ($\mathrm{j}=0$; $\mathrm{j}<\mathrm{n}$; $\mathrm{j}++$) \{...\}
* Most frequently written for loop of all time
* Easy to see iteration count:
- Always n times

Table 21.1 The sequence of operations on j from the for loop with contro specification ($\mathrm{j}=1 ; \quad \mathrm{j}<=3$; $\quad \mathrm{j}=\mathrm{j}+1$)

Operation	Operation Result	Role
$j=1$	j 's value is 1	Initialize iteration variable
$j<=3$	true, j is less than 3	First <continuation> test, continue
$j=j+1$	j 's value is 2	First <next iteration> operation
$j<=3$	true, j is less than 3	Second <continuation> test, continue
$j=j+1$	j 's value is 3	Second <next iteration> operation
$j<=3$	true, j is equal to 3	Third <continuation> test, continue
$j=j+1$	j 's value is 4	Third <next iteration> operation
$j<=3$	false, j is greater than 3	Fourth <continuation> test, terminate

How a for Loop Works

FIT100

- Consider a computation on declared variablesj and text
text = "She said ";
for ($j=1$; $j<=3$; $j=j+1$) \{ text = text + "Never! "; \} alert(text);

How a for Loop Works

FIT100

- Consider a computation on declared variables j and text
text = "She said ";
for (j = 1; j <= 3; j = j + 1) \{
text =text + "Never! ";
\}
alert(text); Starting point

21-12

How a for Loop Works

- Consider a computation on declared variablesj and text

```
text = "She said ";
for ( j = 1; j <= 3; j = j + 1 ) {
text = text + "Never! ";
}
alert(text);
Stop condition
```


How a for Loop Works

- Consider a computation on declared variables j and text

```
text = "She said ";
for ( j = 1; j <= 3; j = j + 1 ) {
    text = text + "Never! \";
}
alert(text); Step size or
increment
```

21-14

J ava Script Rules

forfor Loops

- The Iteration Variable: $\mathbf{j}=\mathbf{1}$;
* Must be declared, and follow rulesfor va riable identifiers
* i , j , and k are the most common choices
- The Starting Point
* Iteration can begin a nywhere, including negative numbers
21-16

Experiments with Flipping Coins
 FIT100

- To practice for loops, we experiment with flipping electronic coins
- We can use the function randNum(2), which retums either 0 (tails) or 1 (heads)
- Set up an iteration in which our randNum() function is performed 100 times, and statistics gathered

Experiments with Flipping Coins (cont'd)
<html><head><title>Coin Flips</title></head>
<body><script language='JavaScript'>
var heads \(=0\), tails \(=0\),
//Counters
var i;
//Iteration variable
for (\(i=0\); \(i<100\); \(i++\))
f \((\) randNum(2) \(==1\))
heads++;
else
tails++;
\}
alert("Heads: " + heads + " and Tails: " + tails);
function randNum(range) \{
return Math.floor(range*Math.random());
\(\}\)
</script></body></html>

- Demo...

Experiments with Flipping Coins

FIT100
(cont'd)

- A Nested Loop
* To run several trials, consider the entire loop we just looked at as one Trial
* Create a nother for loop containing this Trial unit, adding a couple of needed statements
* We have a loop within a loop (nested loop) which causes the Trial loop (0-99) to run five times
21-2

Experiments with Flipping Coins

(cont'd)

- A Diagram of Results
* To show how faroff a perfect 50-50 score a trial is, display with diagram
* Compute the distance from 50-50 and show that number using a sterisks
text = text + 'Trial ' + j + ': ';
for (i = 0; i < (Math.abs(heads-50)); i++) \{ text = text + '*'
\}
text = text + '\n';
alert(text);
21-23

Experiments with Flipping Coins
(cont'd)

FIT100

- i ranges from 0 to 99, so the loop iterates 100 times
- Conditional statement checks a nd recordsthe outcome of random number generation
- When random number is 1, count of heads is inc reased by 1 (heads ++ ;)
- When random number is 0 , count of ta ils is increased by 1 (tails++;)

21-20

Experiments with Flipping Coins
FIT100
(cont'd)
var heads $=0$, tails $=0$;
\}
var i, j;
for ($j=0 ; j<5 ; j++)\{$
for (i=0; i<100; i++) $\{$
if (randNum(2) $==1$)
heads++;
else
tails++;
${ }^{\text {\} }}$ alert("Heads: "+heads+" and Tails: "+tails)
heads $=0$; tails $=0$;

- Demo...
//Iteration vars
//Outer loop start //Trial line 1
//Trial line 2
//Trial line 3
//Trial line 4
//Trial line 5
//Trial line 6) $/ / / \mathrm{Tr}$
//Additional
//outer loop end

Creating and using lists, or a rrays
INDEXING

Indexing

- Process of creating a sequence of namesby associating a base name with a number (like Apollo 13 or Henry VIII)
* Each indexed item is called an element of the basenamed sequence
- Index Syntax
* index number is enclosed in square brackets []
- Iterations can be used to refer to all elements of a name
* $A[j]$ for successive iterationsover j refeming to different elements of A

Indexing (cont'd)

- Index Origin
* The point at whic h indexing begins (the least index)
* In life, the first element may begin with 1, orhave no number(Queen Elizabeth)
* J ava Script always uses index origin 0

JavaScript Rulesfor for Loops

 (cont'd)- The World-Famous Iteration for looping through an array:

```
for ( i = 0; i < fruits.length; i++ )
{
alert(fruits[i]);
}
```

-. length is a built-in JavaScript property that always gives you the length of an a may.
21-29

Rulesfor Arrays

FIT100

- Arrays are normal va riables initia lized by new Array (<number of elements>);
- <number of elements> is number of items in array
- Array indexing begins at 0
- Greatest index is «number of elements> - 1
- Number of elements is a ray length
- Index valuesrange from 0 to (length - 1)

21-2

Array Reference Syntax

- Array reference is a may name to gether with index enclosed in brackets (non-negative integer or expression or variable that resolves to non-negative integer)
array[i]
- Wordd-Fa mous Iteration, or 0-origin loop iteration, is perfect for a rays
21-28
教

Reflections

- Write for 10 minutes on this topic:
* First describe and then compare and contrast
- Dante and
- The Students server
* Be sure to answer these questions:
- How are they connected?
- How do you access each one?
- Read Fluency chapter 22 for Friday!
- Quiz 4 Thursday and Friday
* See email for details on what to review

