Announcements

• **New deadlines because of snow**
 * Today by 5pm: Labs 4 and 5
 * Tomorrow by 11pm: Project 1A
 * A week from tomorrow by 11pm: Project 1B
 • Thursday, February 7
Announcements

• Quiz 2
 * Each quiz was different
 * Your TA will tell you if your
Announcements

• Quiz 3
 * Thursday and Friday
 * Chapters 7 and 8 of Fluency
 * Review
 • Questions at end of chapters
 • Answers at back of book
 • Lectures
Announcements

• Chapter 10 for today
• Chapter 18 for Friday
Basic HTML and Nesting

<html>
 <head>
 <title>Basic HTML</title>
 </head>
 <body>
 </body>
</html>
Basic HTML and Nesting

```html
<html>
  <head>
    <title>Basic HTML</title>
  </head>
  <body>
  </body>
</html>
```
Basic HTML and Nesting

```html
<html>
<head>
<title>Basic HTML</title>
</head>
<body>
</body>
</html>
```
Basic HTML and Nesting

```html
<html>
  <head>
    <title>Basic HTML</title>
  </head>
  <body>
    <p>Content on the Web page goes here</p>
  </body>
</html>
```
Basic HTML and Nesting

```html
<html>
<head>
<title>Basic HTML</title>
</head>
<body>
<p>Content on the Web page goes here</p>
</body>
</html>
```
Basic HTML and Nesting

```html
<html>
<head>
  <title>Basic HTML</title>
</head>
<body>
  <p>Content on the Web page goes here</p>
</body>
</html>
```
```xml
<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
    <meta http-equiv="content-type" content="text/html;charset=utf-8"/>
    <meta http-equiv="Content-Style-Type" content="text/css"/>
    <title>An XHTML 1.0 transitional template</title>
</head>
<body>
```
DOCTYPE and Validator

- DOCTYPE helps the Web Browser display your file properly on the Web
- Validator looks for the DOCTYPE
 - Many versions of HTML
 - From 1.0 to 4.01
 - Now we’re moving to XHTML
 - Compliant with XML
 - We’ll look at XML later in course
XHTML 1.0 Rules

• Delete any blank lines or tabs or spaces at top of file.
• Change all tags to lower case.
• Put quotes around all attributes in tags.
• Fix deprecated, or obsolete, tags:
 * Change to
 * Change <i> to
 * Change <u> to
XHTML 1.0 Rules

• Fix these three special tags so they self-close:
 * Change `
` to `
`
 * Change `<hr>` to `<hr/>`
 * Change `` to ``
XHTML 1.0 Rules

- **Nesting issues:**
 - Tags must be "nested" properly:
 - **RIGHT**
 `<p>Book Title by Author</p>`
 - **WRONG**
 `<p>Book Title by Author</p>`
 - Right or wrong?
 - **Nesting means always wrap the text with one set of tags and then wrap that within the next**

XHTML 1.0 Rules

• Nesting issues:
 * Don’t nest a list within `<p>` tags
 * Always put `
` within `<p>` or `<div>` or `<a>` tags
 * An `<a>` tag can be within a `<p>` tag but a `<p>` cannot be inside an `<a>` tag.
Validating XHTML 1.0

- Fix one error, save, upload, refresh, revalidate; many errors will fall away.
- The Validator will read the DOCTYPE and know which version of HTML or XHTML you are using.
 * DOCTYPE helps the Web browser display the page correctly
What's The Plan?
Algorithmic Thinking

Step-by-step directions for whatever someone, or the computer, needs to do

© 2004 Lawrence Snyder
Algorithm

• A precise, systematic method for producing a specified result

• In real life we do this all the time:
Video

• Algorithms
Five Essential Properties of Algorithms

1. **Input specified**
 - Data to be transformed during the computation to produce the output
 - Must specify type, amount, and form of data

2. **Output specified**
 - Data resulting from the computation—intended result
 - It is possible to have no output
3. Definiteness
 * Specify the sequence of events
 * Details of each step, including how to handle errors

4. Effectiveness
 * The operations are doable

5. Finiteness
 * Must eventually stop
Language in Algorithms

- **Natural language**
 - For people, we use a natural language like English
 - Ambiguity is common in natural language

- **Programming Language**
 - Formal languages designed to express algorithms
 - Precisely defined; no ambiguity
Context Matters

- Program can fulfill five properties of an algorithm, be unambiguous, and still not work right because it is executed in the wrong context
 - e.g., last name in Western countries means family name; in Asian countries it may mean given name

- Context matters: Driving instructions
 - "From the Limmat River go to Bahnhof Strasse and turn right."
 - Assumes you are traveling in a specific direction. If you are not, the directions will fail.
Figure 10.1. Diagram of approaching a street (Bahnhof Strasse) from different directions, giving the “turn right” instruction different meanings.
Program vs. Algorithm

• A program is an algorithm that has been customized to
 * solve a specific task
 • under a specific set of circumstances
 - using a specific language

• Algorithm is a general method; program is a specific method
An Algorithm: Alphabetize CDs

- Imagine CDs in a slotted rack, not organized
- You want to alphabetize by name of group, performing musician, or composer
- How do you solve this problem?
Animation

• Sorting CDs
Analyzing Alphabetize CDs Algorithm

- **Illustrates the five basic properties of algorithms**
 - Inputs and Outputs were listed
 - Each instruction was defined precisely (definiteness)
 - Operations are effective because they are simple and mechanically doable
 - Alphabetizing is mechanical, so our algorithm is effective
 - Finiteness is satisfied because there are only a finite number of slots that can be paired, so instructions 4, 5, and 6 cannot be repeated indefinitely
A Deeper Analysis

• Structural features
 * Two instructions, 5 and 6, in which the agent is directed to go back and repeat instructions. This is called a loop.

 * Loops and Tests
 • A loop must include a test to determine whether the instructions should be repeated one more time

 * Assumptions
 • We assume that
 - The CD rack is full (instructions do not handle the case of an empty slot)
 - The word "following" means a slot further from the start point
Figure 10.3. Flowchart of Alphabetize CDs. Operations are shown in rectangles; decisions are shown in diamonds. Arrows indicate the sequencing of the operations.
Exchange Sort Algorithm

• The Alphabetize CDs example illustrates the standard Exchange Sort algorithm

 * The idea of comparing pairs of items chosen in a particular way, exchanging them if they are out of order, and continuing to sweep through the items

 * We could use the same algorithm to sort on a different principle
Announcements

• Chapter 18 for Friday