

- Project Tum-In Process
* Put name, lab, UW NetID, student ID, and URL for project on a Word doc * Upload to Catalyst Collect It
- Project 1A:
* Tum in before 11pm Wednesday
- Project 1B
* Tum in before 11pm a week from Wednesday

- Quiz 2
* Each section had a different version of the quiz
- I've gone through the statistic sfor each question to see what percentage got each question right
- The wording wasn't clearforsome questions for at least some of the people
- Instead of fina lizing decisions on the questions in question I spent 3 hours getting to campus instead....

- Quiz 2
* Section AA
- Technical problem with Catalyst where only the wrong answers showed properly
- Everyone will get credit for that question
- Two a mbiguous a nswers
- Everyone who picked either answer will get it right
- Stuti will update your quiz sc ores

- Quiz 2
* Othersectionsand people who wrote me
- I'll have news for you by tomorrow

- Quiz 2
* Section AE
- Look in your email for a message from Keith

- Quiz 3
* Chapters 7-8 of Fluency
* Because of the weather, Thursday and Friday this week

- Chapter 11 for today, 10 for Wednesday, 18 for Friday
- Lab 6 in Lab TW
- Project 1A due before 11pm Wednesday
- Thursda y/Frida y la b time:
* Quiz 3
* Project work/questions

- Strugg ling with Va lidating?
* No blank lines at top of page * DOC TYPE on two lines
* All lower case HTML tags
* Three special self-closing tags
- <hr/>
-

-

Light, Sound, Magic: Representing Multimedia Digitally

- RG B Colors: Binary Representation
* Giving the intensities for the three constituent colorsred, green, blue-specifies color on monitor
- Color intensity is represented as a quantity (0 through 255)
- Binary Numbers Compared with Decimal Numbers
* Number of digits is the base of numbering system
* Bina ry is two digits: 0 a nd 1
* Dec imal is 10 digits: 0 through 9
* Hexa decimal is 16 digits: 0 through 9, A through F

- Works the same way except that the place values a re successive powers of 2

Power	Decimal	Binary
0	$1=10^{0}$	$1=2^{0}$
1	$10=10^{1}$	$2=2^{1}$
2	$100=10^{2}$	$4=2^{2}$
3	$1,000=10^{3}$	$8=2^{3}$
4	$10,000=10^{4}$	$16=2^{4}$
\ldots	\ldots	\ldots

- Given bina ry representation, we can find decimal equivalent value by multiplying the digit timesthe place value and adding the results

Table 11.2 The binary number 1010, representing the decimal number ten $=8+2$

2^{3}	2^{2}	2^{1}	2^{0}	Binary Place Values
1	0	1	0	Bits of Binary Number
1×2^{3}	0×2^{2}	1×2^{1}	0×2^{0}	Multiply place bit by place value
8	0	2	0	and add to get a decimal 10

Decima

- Add the decimal values for the places in the binary number with 1's

2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}	Binary Place Values
1	1	1	1	1	1	1	1	Bits of Binary Number
1×2^{7}	1×2^{6}	1×2^{5}	1×2^{4}	1×2^{3}	1×2^{2}	1×2^{1}	1×2^{0}	
Multiply place bit by place value								
128	64	32	16	8	14	2	1	and add to get decimal 255

- A byte is a llocated to each RGB intensity * The sma llest intensity is 00000000
* The largest is 11111111 in binary
- This is 255 in decimal
- This is FF in hex
- Black (\#000000) is no color; white (\#FFFFFF) has full intensity for each RGB color

- If the number being converted is smaller than the place value below it, copy the number into the next cell to its right; enter 0 as the bina ry digit.
- If the number being converted is equal to orlargerthan the place value below it, subtract the place value from the number and copy the result into the first cell of the next c olumn; enter a 1 as the bina ry digit.

Number being converted	200									
Place value	512	256	128	64	32	16	8	4	2	1
Subtract										
Binary Number										

- What c olor d oes this represent: 1100100011001000
- Each byte conta ins the decimal value 200. The c olor is RG B(200,200,200).
* In HTML, write in hexa decimal \#C 8C 8C 8
* Equal a mounts of red, green, a nd blue, closer to white than black (medium gray)
* All c olors with equal RGB values a re black, white, or gray

- To make a lighter color of gray, change the common values to be closer to white (larger numbers)
* For example, add 00010000 (decimal 16) to each color.
1101100011011000
RGB(216,216,216)

11001000
$+\quad 10000$
11011000

binary representing decimal number
binary representing decimal number 16 binary representing decimal number

Figure 11.1. Adding 16 to an RGB value.

- Because computers use fixed-size bit sequences, what ha ppens when there are not enough bits to represent the correct result of a binary addition?
- Called overflow exceptions
* Computers report them when the computation they're told to perform overflows; programmerhas to find way to recover

- An object creates sound by vibrating in a medium such as air
* Vibrations push the air
* Pressure wavesemanate from the object and vibrate our eardrums
* The force, or intensity of the push detemines the volume
* The frequency (number of wa ves per sec ond) is the pitch

Figure 11.3. Sound wave. The horizontal axis is time; the vertical axis is sound pressure.

- To convert continuous information into disc rete information, convert it to bits
- From zero line on graph, record with bina ry number the a mount by whic h the wave is a bove or below it (positive or negative sound pressure)
- At what points do we measure? We can't record every position of the wave

- Take
mea surements at regular intenvals
- Number of
sa mples in a
sec ond is the sampling rate
* The faster the rate, the more accurate the recording

Figure 11.4. Two sampling rates; the rate on the right is twice as fast as that on the left.

- Sampling rate should be related to the wave's frequency
* Too slow a rate could allow waves to fit between the samples; we'd miss segments of sound
* Guideline is Nyquist Rule: Sa mpling rate must be at least twice as fast as the fastest frequency
- Human perception can hearsound up to $20,000 \mathrm{~Hz}$, so $40,000 \mathrm{~Hz}$ sa mpling rate is enough.
- Sta ndard for digital a udio is $44,100 \mathrm{~Hz}(44.1 \mathrm{KHz})$

- Digitizing Process:
* Sound is picked up by a microphone (called a transducer)
* The signal is fed into an a na log-to-digital converter (ADC), which samples it at regular intervals a nd outputs bina ry numbers to memory
* To play the sound, the process is reversed
- Numbers are read from memory into digital-toa nalog converter (DAC), which creates an electrical wave by filling in between the digital values
- Elec tric al signal is output to speaker, which converts

Figure 11.5. Schematic for analog-to-digital and digital-to-analog conversion.

- How accurate must the samples be?
* Bits must represent both positive and negative values
* The more bits, the more accurate the measurement
* The digital representation of audio CDs uses 16 bits (rec ords 65,536 levels, half above a nd half below the zero line)

Figure 11.6. (a) Three-bit precision for samples requires that the indicated reading is approximated as +10 . (b) Adding another bit makes the sample twice as accurate.

- We can compute the representation
- MP3 C ompression
* One computation is to compress the digital audio (reduce number of bits needed)
* Remove waves that are outside range of human hearing
* MP3 usually gets a compression rate of 10:1
- Lower bandwidth requirements, popular for Intemet transmission
- Reproducing the Sound Recording
* Bit file can be copied without losing any information
* Original and copy are exactly the same

- It would take 51 minutes to display an 8×10 color image scanned at 300 pixels per inch (21.6 MB) with a $56 \mathrm{~kb} / \mathrm{smodem}$
- How can we see screen-size pictures in sec ond while surfing the web?
- Typic al computer screen has under 100 pixels perinch
* Storing pic ture digitized at 100 ppi saves a factor of 9 in memory (reducing resolution)
- This would still ta ke 5 1/2 minutes to send at 56kb/s
* Solution: JPEG Compression scheme

- Changing the representation to use fewer bits to store or transmit information
* Example: fax is a long sequence of 0's and 1's encoding where page is white orblack. Run length encoding is used to specify length of first sequence of 0's, following sequence of 1 's, etc.
- Lossless c ompression-original representation can be perfectly reproduced

- Used for still ima ges
- Our eyes are not very sensitive to small changes in hue (gradation of color), but are sensitive to small changes in brightness
* Store a less accurate description of hue (fewer pixels)
* Gets a 20:1 compression ratio without eyes being able to perceive the difference

Figure 11.7. Detail from an image compressed using JPEG.
(a) 14:1 compression (b) 140:1. Check images at www. aw. com/snyder

- Sa me idea asJPEG, a pplied to motion pictures
- JPEG-like compression is a pplied to each frame
- Then "interfra me c oherenc y" is used
* MPEG only has to record and transmit the differences between one frame and the next
* Results in huge amounts of compression

- Reading license plate to deduct toll from car's account
- What are the diffic ulties?
* Computer must capture ima ge of lic ense plate but camera will see other highway images
* Frame grabber recognizes when to snap image and send to computer for processing
* Computer must figure out where in the image the plate is
- Scans groups of pixels looking for edges where color changes
- Looks forfeatures
- Classifier matc hes features to letters of alphabet

- Ena bles c omputer to "read " printed characters
* Business a pplic ations
- Sorting mail and banking

- Creating an entire digital world
- Applies to all senses a nd tries to eliminate the cues that keep us grounded in reality
- Haptic devices
* Input/ output technology for sense of touch and feel
* Haptic glove enablescomputer to detect where our fingers are. When we bring our fingers close enough together, gloves stop their movement so we feel like we're holding something

- The challenge is for the system to operate fast and precisely enough to appear natural
- Latenc y is the time it takes for information to be delivered
- Too long latency period ruins the illusion
* Absolute limit to how fast information can be tra nsmitted—speed of light

- How much information is transmitted per unit time
- Higher bandwidth usually means lowerlatency

- Bias-Free Universal Medium Principle:
* Bits can represent all disc rete information, but have no inherent mea ning
- Bits: The Universal Medium
* Everything that can be represented in a sensible way, can be manipulated
- Bits: Bia s-Free
* The meaning of bits c omes entirely from the interpretation placed on them through programs
- Bits a re Not Nec essa rily Bina ry Numbers
* Bits can be interpreted a s bina ry numbers, or not, depending on use


```
0000 0000/11110001/0000 1000/0010 0000=15,796,256 interpreted as a binary number
    = \squareinterpreted as an RGB}(241,8,32) color (last 3 bytes
    = ADD 1,7,17 interpreted as a MIPS machine instruction
```



```
        n-tilde, blank
    = L: +241, R: +280 interpreted as sound samples
    = 0.241.8.32 interpreted as an
    IP address
    = 00 F1 08 20 interpreted as a
        hexadecimal number
```

Figure 11.8. Illustration of the principle that "bits are bits." The same 4 bytes shown can be interpreted differently.

- Cha pter 10 for Wednesday
- Project 1A due before 11pm Wednesday
- Quiz 3 on Thursday/Friday
- Project 1B due a week from Wednesday

