

 1

Lab 9
Time Shift: Conditionals

Now that you know the basics of working with JavaScript, we’ll work on a more
complicated web page that will give us a chance to see how web forms and JavaScript
programming can work together. In the process, we’ll also get some practice with
conditionals. We’ll see how to use HTML to produce the graphical user interface for a
web-based program, and we’ll write JavaScript code to perform the computations the
program requires.

Vocabulary

All key vocabulary used in this lab are listed below, with closely related words listed
together:

tag, attribute
form element
variable, declaration, assignment
conditional
Boolean expression

Post-lab Questions

Write your answers after completing the lab, but read them carefully now and keep them
in mind during the lab.

1. What might be an advantage of forcing the user to input times using drop-down
lists instead of text boxes?

What might be a disadvantage, either for the user or the programmer?

2. How are text boxes similar to variables. How are they different?

3. Describe two ways we’ve seen so far that JavaScript code in a web page can be
executed.

 Lab 9: Time Shift

 2

4. When you’re finished with this lab, you’ll end up with quite a bit of code stuck in
input tag for the Update button. In another lab, we’ll see how we can use
functions to more cleanly separate the JavaScript from the HTML. Why do you
think this separation might be desirable?

Discussion and Procedure

Part 1. JavaScript with web forms

In the last lab, we put a <script> section in an HTML file, and opening that web page
in a browser caused the code to run immediately. In this lab, we’ll see how we can write
JavaScript code that doesn’t run immediately when the page opened, but instead runs
when the user clicks on a button, enters a value in a text box, or otherwise performs some
action. Roughly speaking, we’ll be using JavaScript to tell the page how to react when
the user interacts with different parts of the page.

We’ll start with a few, smaller exercises, but at the end of this lab, you’ll create a page
that can take a time from your local time zone and show you what time it would be in
another U.S. time zone. The example below is shown for the Pacific time zone.

Let’s start with learning how to place text boxes, drop-down lists, buttons, and other
kinds of form elements on a web page. Strictly speaking, this part of the lab is really
more about HTML than about JavaScript. In general, form elements allow users to
interact with web pages beyond just clicking on links. They are the input mechanism for
interactive web pages designed using JavaScript or another scripting language.

HTML offers a wide variety of form elements, so we’ll only cover a few of the more
commonly used ones here: the text box, the button, and the drop-down list box.

1. Start a new web page file time_zones.html. Refer to lab 4 for the basics.

 Lab 9: Time Shift

 3

Open the file in a web browser so you can reload and see the results after each
step.

2. Add a <form> section. In the <body> section, add a <form> section. In the
opening tag, include the name attribute as shown below.

<form name=timeZones>

</form>

At this point, nothing will appear in your browser, because the form itself is empty.
Form elements must be placed inside a <form> section, rather than just mixed in with
the rest of your HTML. We are also giving this form a name, timeZones. The reason
for this will become clearer later, but we will use the form name in JavaScript code to
access its form elements, e.g., to get whatever text the user has entered in a text box.

3. Add an OK button to the form. Adding a button only requires a single <input>
tag with a few attributes, as shown below. The value attribute is what sets the
text appearing on the button. At this point, the button isn’t set up to do anything,
so clicking it will have no effect.

<input type=button value="OK" />

4. Add a text box to the form before the button. Text boxes are similarly simple, but
we’ll use a name attribute, which we’ll use to get what the user entered from
inside our JavaScript program.

<input type="text" name="hoursBox" />
<input type="button" value="OK" />

Your web page should now look something like this:

5. Add a size attribute with a value of 6 to the text box’s input tag. Did this
change the way your web page appears when it is loaded? If so, how?

 Lab 9: Time Shift

 4

It’s good practice to provide the web page user with some idea of what they’re expected
to do with the text boxes and other form elements.

6. Add explanatory text around the text box. Let’s start building the user interface
for our time zone page. Add some text on either side of the text box’s input tag
so your page ends up as shown below. Use the time zone you actually live in.

Time zone reference. Not sure what time zone you live in? Want to know what time
the U.S. government says it is in your town? Check out the web site time.gov, which is
run by the National Institute of Standards and Technology and the U.S. Naval
Observatory. You can also find some interesting historical facts about timekeeping on
their site.

7. Resize the hoursBox text box. Since the user is only expected to enter at most
two digits in the text box, we should make it a lot shorter. You can do this by
adding a size attribute to the text box’s input tag. Set the size to 2.

Part 2. Putting some JavaScript behind the form

We’ve seen how to set up a very simple form with a text box and a button, but at this
point, nothing happens when the user enters something in the box or clicks the button.
Generally speaking, so far, we’ve only described what the page looks like using HTML,
but we haven’t encoded what the page should actually do. For this, we need a scripting
language like JavaScript.

In the previous lab, we saw how to add JavaScript code to your HTML so that the code is
executed as soon as the page is loaded. While this is generally useful, this isn’t what
we’re looking for here. In this part of the lab, we’ll see how we can set up the form
elements with short sections of code that run when the user interacts with them in some
way (e.g., clicking). For instance, we’ll start by “attaching” some code to the button we
have on our page. To get warmed up, we’ll just set up the button so that it pops up an
alert dialog box when it is clicked, and doing this is about as simple as it sounds.

8. Add an onclick attribute to the button’s input tag as shown below. This
should look a little strange to you, since we’re sticking a piece of JavaScript
inside an HTML tag, but this is the way to set up the button so that it runs the alert

 Lab 9: Time Shift

 5

code each time the button is clicked.

<input type=button value="OK"
onclick='alert("OK clicked!");' />

Note that we’ve put the line of JavaScript in single quotes. Why do you think it’s
necessary to use single quotes instead of double quotes in this case?

9. Reload the page. Does anything different happen when the page is reloaded (but
before click the button)?

What happens when you click the button?

In general, you could put any amount of valid JavaScript code in the value of the
onclick attribute. The example code in Chapter 18 shows several form elements with
more than a few lines of code embedded in their tags.

Now that we’ve seen how to build a web form and put JavaScript code behind it, we’re
ready to start on a “first draft” of the time zone web page in earnest. Before we begin, save your
page.

Part 3. Version 0 of the time zone page: Input validation

Even though the time zone web page might not seem to complicated to you, it’s
important to use an intelligent strategy for producing it. The recommended strategy for
any programming task is to build up your project in small steps. This process ensures
that you will make steady progress (rather than getting stuck and frustrated) toward a working
solution. As we step through the process toward completion for the time zone web page,
you’ll see how this strategy works in more detail.

To begin with, identify a reasonable, short-term goal: a simpler version of the final
project that should be considerably easier to complete than the whole thing all at once. In
the case of the time zone page, let’s be very conservative and make our first goal a web
page that doesn’t actually do any time-zone computation. However, it will check what
the user enters in the hoursBox text box to make sure the input is valid (i.e., make sure
it makes sense). Input validation is frequently the first thing that programs do. After all,
why bother proceeding with computation using the input if it doesn’t make sense?

First, let’s consider what we mean by valid input for this text box. Since we eventually
plan to give the user the option of am or pm, we expect the user to enter an integer from 1
to 12. By using a conditional and some handy JavaScript tricks, we can check what the
user enters in the text box and use alert to give the user instructions if they don’t enter

 Lab 9: Time Shift

 6

valid input. All of the code we write will be in the onclick value for the button. To
get you started, we’ll provide this code for you, but you’ll be writing most of the
remainder of the code for the time zone page.

10. Change the button’s input tag as shown below. Note that we’ve changed the
value attribute so the button says “Update” instead of “OK.”

<input type=button value="Update"
onclick='
var hours =
 parseInt(document.timeZones.hoursBox.value);
if (hours < 1 || hours > 12) {
 alert("Please enter an integer from 1 to 12.");
 return;
}
// using alert to display input as reality check
alert("Input " + hours + " is valid.");
' />

11. Reload the page and for each of the values listed below, try typing it in the text
box and clicking the Update button. Report what happens for each of the values.

value: 10

value: 1

value: 16

value: -2.1

value: 11.53

value: 5hey

value: hey

You’ve already seen conditionals in the Fluency textbook, but the parseInt line
probably looks a little mysterious to you. First, you should recognize that this line
declares a variable called hours. What’s being stored in this variable? Two things are
happening on the right side of the assignment here (i.e., on the right side of the =). First,

 Lab 9: Time Shift

 7

we’re retrieving the value inside the hoursBox text box. Look inside the parentheses
after parseInt, and you’ll see how we’re using the form name (timeZones) and the
text box name (hoursBox) to get the value:

document.timeZones.hoursBox.value

Reading from left to right, we’re asking for the current HTML document’s
timeZones form’s hoursBox form element’s value. Kind of like an Internet
hostname, this identifier goes from general to specific, with periods separating the parts
of the name. (Now do you see why it was important to give the form and the text box
name attributes?)

What does the parseInt do? This is a handy JavaScript way of converting whatever
the user enters in the text box into an integer value. For instance, if the user enters
11.53, JavaScript’s parseInt will convert that to just 11, dropping the decimal part.
If the user enters a number followed by some letters (e.g., 5hey), parseInt will drop
off the letters and give us just 5. What parseInt doesn’t do is make sure the number
entered falls within a certain range, which is why we use the conditional to check this
ourselves after the parseInt line.

The return that executes if the user’s input is out of range simply causes the code to
stop executing. In other words, this is what prevents the rest of the code from executing
if the user’s input was not valid. (Note that the second dialog box never appears if the
input is out of range.)

When it comes to readability, humans first and computers second. It’s important to
remember that you and other people will be reading your code just as often as your
computer will be “reading” it as it executes it. Writing your code so that it’s easily
readable and visibly well-organized will, in fact, help you quickly notice and fix bugs and
simplify adding new code later. You should pick variable and HTML tag names
sensibly. Instead of k, x, y1, z3, and other cryptic, short names, consider meaningful
names like hoursBox and ampm. It’s perfectly OK for an HTML tag or even a line of
JavaScript code to be split across multiple lines in your file, which can make it
considerably easier to read and edit. Indentation can be a helpful visual cue for split lines
(like the parseInt line above) as well as for blocks of code in conditionals (also shown
above). Finally, adding notes to yourself in the form of comments (text preceded by a
double slash, //) can help you and others understand your code.

We can extend the input validation even further with another built-in JavaScript trick,
isNaN. NaN stands for “Not a Number,” and it works hand-in-hand with parseInt.
If the user’s input doesn’t even remotely resemble an integer (e.g., a bunch of letters or
words), the parseInt line will store the special value NaN in the hours variable. In
that case, it doesn’t even make sense to try to compare it to 1 and 12 to check if it’s in the
valid range.

 Lab 9: Time Shift

 8

12. Add the condition isNaN(hours) to the Boolean expression, making it the first
of the three conditions that are checked. We’ll leave it to you to decide whether
you should use or (||) or and (&&) when adding this condition.

The user needs to provide two other pieces of input: whether the time is am or pm and
the time zone for which the converted time is to be computed. These will be added in the
form of drop-down lists, which are a little more complicated than text boxes and buttons
to write in HTML. We’ll provide the HTML for the am/pm list and leave the time zone
list to you.

13. Add the am/pm drop-down list by adding the HTML below to the timeZones
form. Note that drop-down lists are added using a select section, rather than a
single input tag. Inside the select section, you use single option tags for
the individual selections to be included in the drop-down list.

<select name=ampmList>
 <option value="am">am
 <option value="pm">pm
</select>

Now you can use document.timeZones.ampmList.value to retrieve the current
selection in this drop-down list.

14. Replace the last alert line with the code below to test that your drop-down list
is set up properly.

var ampm = document.timeZones.ampmList.value;
alert("Input " + hours + ":00 " + ampm
 + " is valid.");

Explain why validation of input for the am/pm drop-down list is not necessary, as
was the case with the hours text box.

15. Add a text box for the program’s output, the computed time in the selected time
zone. Make it about size 8 and name it shiftedTimeBox.

This text box will be used to display the result of shifting the time to the selected
time zone. So far, we’ve only seen how we can retrieve the value in a text box,
but you can also assign a value to a text box. Try adding the assignment below to
the very end of your button onclick code.

document.timeZones.shiftedTimeBox.value =
 "not sure yet";

 Lab 9: Time Shift

 9

Eventually, we will add code to compute the shifted time and replace the right
size of the assignment with the correct expression to output that.

What happens when you reload the page, enter a valid hour value, then click
Update?

16. Add a second drop-down list for time zone selection. Use the am/pm list HTML
above as a model. Name this new list zoneList and provide the choices
Hawaii, Alaska, Pacific, Mountain, Central, and Eastern, which are the major time
zones covering the fifty states.

17. Add code to retrieve the selected value from zoneList and store it in a variable
named zone. Use the analogous code for the am/pm list above as a model.

Your web page should now look like this:

Although it doesn’t compute the shifted time, it does do input validation, which, as you
saw, is no small task.

Part 4. Version 1 of the time zone page: Ignoring am/pm

Our next goal is a web page that does part of the time conversion: it will give the time in
the selected time zone, but it won’t say whether the shifted time is am or pm, which, as
you’ll see, is a little tricky to figure out.

Before we try to write code to solve the problem of shifting time to a different time zone,
make sure you can do it yourself! After all, how can we expect to write precise
instructions for a computer to do this if we’re the slightest bit unclear on how to do it
ourselves? Start by figuring out what the time difference is between your local time zone
and the other time zones. For instance, if you’re in the Pacific time zone, the difference
to the Eastern time zone is +3 hours, and the difference to Hawaii is –2 hours. Fill in the
table below for your local time zone. The time zones are listed in order from east to west,
and each one differs from the next by one hour.

 Lab 9: Time Shift

 10

time zone difference from local time

Hawaii

Alaska

Pacific

Mountain

Central

Eastern

This table simplifies computing shifted time. All you do is take the local time and add
the difference. If the result is less than 1 or greater than 12, you need to do a little
arithmetic to end up with a valid time, but that’s all.

For example, 1:00 Pacific time is 11:00 Hawaii time, because the difference is –2 hours.
To get this, we add –2 to 1, which yields –1. Since –1 is not a valid time, we correct it by
adding 12, and we get 11.

So the algorithm for shifting time (ignoring am/pm for now), is something like this:

1. Depending on the selected time zone, determine the difference from local time.

2. Add this difference to the hour part of the local time.

3. If the result is less than 1, add 12; on the other hand, if the result is greater than
12, subtract 12.

Which of these steps do you think will require a conditional?

Based on this planning, try putting the above algorithm in code. We suggest you use at
least a couple additional variables: one to store the time difference, one to store the
shifted time (in hours). At the end, display the shifted time in the text box
shiftedTime. You might want to leave out Step 3 above and get the time-shifting
computation without the correction working first. (Remember, small steps!)

Don’t forget to test your page with a variety of times to verify that it’s working properly.
Especially once you get the correction (Step 3) working, test that it works for times that
you know will require correction (as in the Pacific-to-Hawaii example above).

Part 5. Version 2 of the time zone page

Recognizing when you need to add or subtract 12 to correct a shifted time is easier than
recognizing whether shifting the time changed it from am to pm or vice versa. In general,

 Lab 9: Time Shift

 11

the am/pm must be “flipped” (am to pm or pm to am), when the time shifts forward past
11:00 or shifts backward past 12:00. Expressing this as a Boolean expression requires
some careful thought.

So you can concentrate on this complicated Boolean expression, start by writing the code
to “flip” the value of the ampm variable. Test that it works properly by including the
value of ampm in the output in shiftedTimeBox.

The additional code you need to add for this final part of the lab will look like this,
leaving some blanks for you to fill in:

if (Boolean expression) {
 code to flip ampm
}

That’s not a lot of code, but it will require some thinking.

See next page for grading rubric and extra-credit options.

Extra Credit Activities

• Make a copy of your page by saving it as fit100/lab09/time_zones_function.html
Move your function from the onclick event in the input element to a separate function that is
called from the onclick event. Call the function convertTime() and declare it in the
<head> section of the html page.

• Make a copy of your page by saving it as fit100/lab09/time_zones_more.html Add
two more time zones to your GUI and provide the additional coding.

• Make a copy of your page by saving it as fit100/lab09/time_zones_military.html
Modify your code to use inputs and outputs time in 24-hour format (also known as “military
time”) rather than using am/pm. Be sure to save it again when you’re done and upload it to your
Dante account.

• Make a copy of fit100/lab09/time_zones_military.html by saving it as
fit100/lab09/time_zones_both.html. On the GUI give the user a choice of military
time or am/pm. Be sure to save again when you’re done and upload it to your Dante account.

Rubric

Item Points

GUI with form section and all inputs (looks
like screenshot in part 4)

5

Input validation: “Please enter an integer
between 1 and 12”

Test: 15, 0, text, blank

5

Test: 9 am to Eastern Time (ET), 9pm to ET

• Time shift works going east

• Am/pm flip works going east for both

5

Test: 2pm to Alaska Time (AT), 2am to AT

• Time shift works going west

• Am/pm flip works going west for both

5

Extra Credit: onclick calls a convertTime
function in the <head>

5

Extra Credit: two more time zones added 5

Extra Credit: military times (24-hr clock) 10

Extra Credit: offers choice of military or
am/pm time (works with both)

5

Turn‐in at end of Lab

Submit your Lab 09 work through Catalyst Collect-It. For Lab 09 please turn in only a Word document or
lab09.txt file with the URL for your html file, your name, UW NetID, Student ID No., and Lab section,
and the answers to the Post-Lab Questions listed at the beginning of this lab.

Lab 9 Online Due Date: Monday, March 3, before 5:00 pm.

Upload only the Word or lab09.txt file to the Catalyst Collect-It Turn-in Area on the Course Calendar for
this lab number. Do not continue working on the lab after the deadline or it will be considered late.

If you want to make further changes to the lab, copy the lab and save it as a different file name before
uploading it. If you make changes to the file listed in the URL you submitted in your Word or .txt
document, your lab will be considered late.

	lab09
	lab09_rubric.pdf

