

Announcements

Quiz canceled for this week

Announcements

- Quick Write this week on Privacy
 - * (First half of chapter 13 in *Fluency*)

A Table with a View

Data Storage and Transfer with XML and Databases

Differences Between Tables and Databases

- When we think of databases, we often think of tables of information
- Comparing Tables
 - * Database tables
 - Metadata tag identifying each of the data fields
 - * Spreadsheet tables
 - Rely on position to keep the integrity of their data
 - * HTML tables
 - Data as table entries with no unique identity at all
 - Concerned only with how to display the data, not with its meaning

The Database Advantage

- Metadata is key advantage of databases over other systems recording data as tables
- Two of the most important roles in defining metadata
 - * Identify the type of data with a unique tag
 - * Define the relationships of the data

XML: A Language for Metadata Tags

- Extensible Markup Language
 - * Tagging scheme similar to XHTML
 - * No standard tags to learn
 - Self-describing, think up the tags you need
 - Works well with browsers and Webbased applications
 - * Use a simple text editor
 - * XML tag names cannot contain spaces

Extensible Markup Language

XML

An Example from Tahiti

Area in km² for Tahiti & neighboring islands

Figure 16.1 XML file encoding data for the Windward Islands database. The first line states that the file contains XML tags.

An Example from Tahiti (cont'd)

First line

```
<?xml version="1.0" encoding="ISO-8859-
1" ?>
```

- File should be ASCII text
- File extension should be .xml

16-1

Table 16.1 Rules for writing XML.

Required first line	<pre><?xml version="1.0" encoding="ISO-8859-1"?> must appear on the first line, starting in the first position.</pre>
First tag	The first tag encountered is the <i>root</i> element, and it must enclose all of the file's content; it appears on the second or possibly third line.
Closing tags	All tags must be closed.
Element naming	 Observe these rules: Names can contain letters, numbers, and underscore characters. Names must not start with a number or punctuation character. Names must not start with the letters xml (or XML, or Xml, etc.). Names cannot contain spaces.
Case sensitivity	Tags and attributes are case sensitive.
Proper nesting	All tags must be well-nested.
Attribute quoting	All attribute values must be quoted; paired single quotes (apostrophes) or paired double quotes are okay; use "dumb" quotes only; choose 'opposite' quotes to enclose quoted values.
White space	White space is preserved and converted to a single space.
Comments	XML comments have the form This is a comment .

Expanding Use of XML

- Combine encodings of two archipelagos
 the Windward and the Galapagos
 Islands
- Root element is the tag that encloses all of the content of the XML file
 - * <archipelago> in Fig. 16.1
 - * <geo_feature> in Fig. 16.2
- Indenting for readability and structure


```
<?xml version = "1.0"
                                             <archipelago>
     encoding="ISO-8859-1" ?>
                                                 <a name>Galapagos Islands
<geo feature>
                                                 </a name>
                                                 <island>
   <archipelago>
      <a name>Windward Islands
                                                    <iName>Isabella</iName>
                                                    <area>4588</area>
      </a name>
      <island>
                                                    <elevation>1707</elevation>
          <iName>Tahiti</iName>
                                                 </island>
          <area>1048</area>
                                                 <island>
      </island>
                                                    <iName>Fernandina</iName>
      <island>
                                                    <area>642</area>
          <iName>Moorea</iName>
                                                    <elevation>1494</elevation>
          <area>130</area>
                                                 </island>
      </island>
                                                 <island>
      <island>
                                                    <iName>Tower</iName>
          <iName>Maiao</iName>
                                                    <area>14</area>
          <area>9.5</area>
                                                    <elevation>76</elevation>
      </island>
                                                 </island>
      <island>
                                                 <island>
          <iName>Mehetia</iName>
                                                    <iName>Santa Cruz</iName>
          <area>2.3</area>
                                                    <area>986</area>
      </island>
                                                    <elevation>846</elevation>
      <island>
                                                 </island>
          <iName>Tetiaroa</iName>
                                             </archipelago>
          <area>12.8</area>
                                          </geo feature>
      </island>
   </archipelago>
```

Figure 16.2 XML file for the Geographic Features database. XML ignores white space, so the text in the file has been indented for easier reading.

Attributes in XML

- Use attributes for additional metadata, not for additional content
 - * Not good, name is content: <archipelago name="Galapagos">
 - * Better to give alternate form of the data

```
<a_name
accents="Gal&aacute;pagos">Galapagos</a_name>
```


Effective Design with XML Tags

- Identification Rule: Label Data with Tags Consistently
 - * You can choose whatever tag names you with to name data, but once you've decided on a tag for a particular kind of data, you must always surround it with that tag.

Effective Design with XML Tags (cont'd)

- Affinity Rule: Group Related Data
 - * Enclose in a pair of tags all tagged data referring to the same entity. Grouping it keeps it all together, but the idea is much more fundamental: Grouping makes an association of the tagged data items as being related to each other, properties of the same thing.
 - Groups together data for a single thing an island
 - Association is among properties of an object

Effective Design with XML Tags (cont'd)

- Collection Rule: Group Related Instances
 - * When you have several instances of the same kind of data, enclose them in tags; again, it keeps them together and implies that they are related by being instances of the same type.
 - Groups together data of several instance of the same thing – islands
 - Association is among the objects themselves (entities)

The XML Tree

- XML encodings of information produce hierarchical descriptions that can be thought of as trees
 - * Hierarchy a consequence of how tags enclose one another and the data

Figure 16.3 The XML displayed as a tree. The encoding from Figure 16.2 is shown with the root element (geo_feature) to the left and the leaves (content) shown to the right.

DATABASES

What is a Database

- Any organized collection of data
- A collection of similar data
- Examples of databases:
 - * Telephone book white pages
 - * T.V. Guide
 - * Airline reservation system
 - * Motor vehicle registration records
 - * Papers in your filing cabinet
 - * Files on your computer hard drive

Data | Information | Knowledge

Data

- Can be defined in many ways
- * IS defines data as unprocessed information

Information

 Data that have been organized and communicated in a coherent and meaningful manner

Knowledge

 * Knowledge—information evaluated and organized so that it can be used purposefully

Data is converted into information, and information is converted into knowledge

Data vs. Information

- We collect data
- Information is harvested from data

- Many companies are good at collecting data
- Fewer are good at harvesting information

Ultimate Purpose of a Database Management System (DBMS)

To transform

Why do we need a database?

- Keep records of our:
 - * Clients
 - * Staff
 - * Volunteers
- To keep a record of activities and interventions
- Keep sales records
- Develop reports
- Perform research

Database Terminology

Phone book:

Fields (columns)

Records (rows)

Anderson	Thomas	Α	123 Marine View Dr.	237-1234
Benson	Karen	С	1300 California Ave	237-1098
Casserly	Rick	W	12492 Rd 19	342-0502
Drummond	Lynn	M	12059 30th Ave W	931-1105

Table

Field (the columns in a table)	•	Smallest unit of information in a table Sometime called "attributes"	•	First name Last name Middle initial Street address Phone number(s)
Record (the rows in a table)	•	All related fields are collectively called a record	•	All fields for one person are a record
Table	•	A collection of records is a data table	•	Collection of everyone's records
Database Management System (DBMS)	•	All the related tables, queries, data entry and edit forms, reports, macros and VBA modules constitute a database		

Database Management System (DBMS)

- Software tools for working with data
- Designed to:
 - * Store (tables)
 - * Organize (sort)
 - * Add, modify or delete
 - * Ask questions (queries)
 - * Produce forms and reports
 - Summarizing
 - Displaying details
- Toolbox is a good analogy

DBMS Examples

Microsoft Access

- Structured Query Language (SQL)
 - * Microsoft SQL Server
 - * Oracle
 - * MySQL
- FileMaker Pro
- Lotus Notes
- Open Office Base

Flat-File vs. Relational Database

Flat-File Database

- All relevant data in a single table, or series of unrelated tables
- Work best for small quantities of data; where viewing and sorting the data in a single list does not create a time-consuming task
- * Typically a person's first databases
- * Example: Excel spreadsheet or Word data list file

Relational Database

- Provide a solution to data entry redundancy problems
- Linked through common fields (columns) with exactly the same data
- * Tables linked together can be queried as if one table

Flat-File Example

Staff Telephone List

Last Name	First Name	Emp ID	Dept	Location	Work Phone	M/S	Supervisor Name	Supr Phone
Adams	Wes	19589	PROD	Seattle	(206) 221-1958	QR-07	Susan Buckle	(206) 221-2241
Alberts	George	21533	PROD	Seattle	(206) 221-2153	QR-35	Marsha Mosley	(206) 221-1975
Allen	Susan	20256	PROD	Renton	(206) 393-2025	PB-18	Frank Sullivan	(206) 393-1000
Allert	Maria	10544	PROD	Seattle	(206) 221-1054	QR-27	Lynn Jarret	(206) 221-1366
Andrews	Mike	22113	PROD	Seattle	(206) 221-2211	QR-12	Harry Hillis	(206) 221-2179
Apperly	Ward	12244	PROD	Renton	(206) 393-1224	PB-14	Molly Goldberg	(206) 393-1513
Arthur	Diane	12370	MKTG	Bellevue	(206) 882-1237	RL-27	Wes Adams	(206) 221-1958
Asher	Jane	11222	ACCT	Seattle	(206) 221-1122	BX-45	Val Johnson	(206) 221-1958
Astor	Lawrence	20286	PROD	Seattle	(206) 221-2028	QR-10	Peggy Kramer	(206) 221-2083
Ayres	William	22263	PROD	Seattle	(206) 221-2226	QR-10	P. Kramer	(206) 221-2083
Baker	Gerald	19042	ACCT	Seattle	(206) 221-1904	BX-45	Valerie Johnson	(206) 221-1958

- Weaknesses common to flat-file systems
 - * Duplicate information in the table
 - * Inconsistencies in the way Supervisor Names are entered

Relational Database Example

Database Tables

Emp ID

Fname

Lname

Field:

Table:

Sort:

Show:

Criteria: or:

Hiredate Dept Grade

Emp ID

Staff List (Small)

Lname

Ascending

Forms

Reports

Dept: Accounting & Finance Vice President: Valerie Smith

| Number of Employees: 28 | Total Monthly Salaries: \$59,048.53 |
| Average Monthly Salary: \$2,108.88 |
| Largest Monthly Salary: \$3,812.55 |
| Lowest Monthly Salary: \$1,205.83 |
| Average Pay Grade: 8

Training Records by Employee

Emp ID	Last Name	First Name	Course Name	Start Date	Grade	Room	Instructor	Dept	Hours	Cost
19589	Adams	Wes	Microsoft Access, Level 1	2/12/2006	3.4	G218	Terrie Urbas	PROD	7	\$145.00
			Microsoft Access, Level 2	2/13/2006	3.4	G218	Terrie Urbas	PROD	7	\$145.00
			Microsoft Access, Level 3	2/14/2006	3.4	G218	Terrie Urbas	PROD	7	\$145.00
			Microsoft Access, Level 4	4/9/2006	3.6	G218	Terrie Urbas	PROD	7	\$145.00
			Microsoft Access, Level 5	4/10/2006	3.6	G218	Terrie Urbas	PROD	7	\$145.00
			Microsoft Windows 95, Level 1	9/2/2006	3.1	R121	Bob Larson	PROD	7	\$145.00
21533	Alberts	George	Microsoft Excel, Level 4	4/29/2005	2.7	G218	Andrea Forster	PROD	7	\$145.00
			Introduction to C omputers	6/5/2005	3.7	G219	Dan Mclalwain	PROD	7	\$145.00
			Microsoft Excel, Level 1	7/2/2005	2.6	G218	Bob Larson	PROD	7	\$145.00
			Microsoft Excel, Level 2	7/3/2005	2.6	G218	Bob Larson	PROD	7	\$145.00
			Microsoft Excel, Level 3	7/4/2005	2.6	G218	Bob Larson	PROD	7	\$145.00
			Microsoft Access, Level 1	6/18/2006	3.4	G218	Bob Larson	PROD	7	\$145.00
			Microsoft Access, Level 2	6/19/2006	3.4	G218	Bob Larson	PROD	7	\$145.00
			Microsoft Access, Level 3	6/20/2006	3.4	G218	Bob Larson	PROD	7	\$145.00
			Microsoft Access, Level 4	8/13/2006	3.6	G218	Bob Larson	PROD	7	\$145.00
			Microsoft Access, Level 5	8/14/2006	3.6	G218	Bob Larson	PROD	7	\$145.00
			Microsoft Windows 95, Level 1	11/2/2006	3.1	R121	Doug Hitchman	PROD	7	\$145.00
20256	Allen	Susan	Microsoft Word, Level 1	6/2/2006	4.0	R123	Sally Larson	PROD	7	\$145.00
			Microsoft Word, Level 2	6/3/2006	4.0	R123	Sally Larson	PROD	7	\$145.00
			Microsoft Word, Level 3	6/4/2006	4.0	R123	Sally Larson	PROD	7	\$145.00
			Microsoft PowerPoint, Level 1	7/31/2006	3.9	G107	Bob Larson	PROD	7	\$145.00
			Microsoft Excel, Level 1	3/29/2007				PROD	7	\$145.00
			Microsoft Excel, Level 2	3/30/2007				PROD	7	\$145.00
			Microsoft Excel, Level 3	3/31/2007				PROD	7	\$145.00
10544	Allert	Maria	Microsoft Windows 95, Level 1	8/26/2005	3.0	R121	Doug Hitchman	PROD	7	\$145.00
			Microsoft Windows 95, Level 2	12/16/2005	3.2	R121	Doug Hitchman	PROD	7	\$145.00

Thursday, January 04, 2007 Page 1 of 83

Location Employee Emp ID Work Phone Mail Stop Budget Asher, Jane 11222 Seattle (206) 221-1122 BX-45 A-1834 Baker, Gerald 19042 (206) 221-1904 BX-45 A-1834 Seatte Carrera, Barbara 20002 Renton (425) 393-2000 BB-27 A-1834 BX-45 A-1834 Ewing, Robert 12872 Seattle (206) 221-1267 Fairchild, Earl 16332 (425) 393-1633 BB-27 A-1834 Farmer, Lou 14082 Seattle (206) 221-1408 BX-45 A-1834 Giles, Peter 12752 Seattle (206) 221-1275 BX-45 A-1834 Graham, Margaret 21902 (206) 221-2190 BX-45 A-1834 Graves, Bert 10702 (206) 221-1070 BX-45 A-1834 BX-45 A-1834 (208) 221-1857 Henderson, Peter 18572 Seattle Hickok, Joe 21752 (425) 393-2175 BB-27 A-1834 Hoover, Toni 22062 Seattle (206) 221-2206 BX-45 A-1834 BB-27 A-1834 Isaacs, Rick 18412 Renton (425) 393-1841 Lautenbach, Duane 21932 (206) 221-2193 BX-45 A-1834 McGinnis, Gerald 21592 Renton (425) 393-2159 BB-27 A-1834 BB-27 A-1834 Murray, Beverly 19932 Renton (425) 393-1993 Perkins, Leslie 15602 (206) 221-1560 BX-45 A-1834 20742 (425) 393-2074 BB-27 A-1834 Randall, Maxine Renton (206) 221-1962 BX-45 A-1834 Roberts, Dick 19622 Seatte Robertson, Georgia 11582 (206) 221-1158 BX-45 A-1834 21942 (425) 393-2194 BB-27 A-1834 Sample, Roger Renton Selleck, Shirley 21962 Renton (425) 393-2196 BB-27 A-1834 Smith, Steve (425) 393-1200 BB-27 A-1834 Smith, Valerie 15002 Seattle (206) 221-1500 BX-45 A-1834 BX-45 A-1834 Strassberger, Tom 22503 Seattle (206) 221-2279 Thompson, Tom 15992 Seattle (206) 221-1599 BX-45 A-1834 11972 (425) 393-1197 BB-27 A-1834 Wentworth, Cathy Renton (425) 393-2326 BB-27 A-1834 Zoom, Zelda 22517 Renton

ay, January 04, 2007 Page 1 of 9

RELATIONAL DATABASES

Video

Relational databases and tables

Relational Database Model

- Introduced by E. F. Codd in 1970
- A Logical View of Data
 - * Enables developer to view data logically rather than physically
 - Greater logical simplicity tends to yield simpler and more effective database design methodologies

Tables

- Cornerstone of Relational DBMS
- Advantages structural and data independence
- Conceptually Resembles a file
 - Note a file is actually a physical structure
- Easier to understand than its hierarchical and network database predecessors

Table Characteristics

1	A table is perceived as a two-dimensional structure composed of rows and columns.
2	Each table row (tuple) represents a single entity occurrence within the entity set.
3	Each table column represents an attribute, and each column has a distinct name.
4	Each row/column intersection represents a single data value.
5	All values in a column must conform to the same data format. For example, if the attribute is assigned an
	integer data format, all values in the column representing that attribute must be integers.
6	Each column has a specific range of values known as the attribute domain.
7	The order of the rows and columns is immaterial to the DBMS.
8	Each table must have an attribute or a combination of attributes that uniquely identifies each row.