Programming

-Why is programming fun?

- Finally, there is the delight of working in such a tractable medium. The programmer, like the poet, works only slightly re-moved from pure thought-stuff. He builds his castles in the a ir, from a ir, creating by exertion of the imagination. Few media of creation are so flexible, so easy to polish and rework, so readily capable of realizing grand conceptual structures.

Source: Frederick P. Brooks, Jr. The Mythical Man-Month Essays on Software Engineering.

- Project 2B
* Due on Wednesday before 12 Noon
- If you don't submit the quiz before 11 , your answers are gone!!
- Aim at submitting quiz before 11

Announcements

Announcements

- Undergraduate Research Symposium
* Friday
* How many attended?

Announcements

FIT100

- La bs this week
* Monday-Tuesday
- Finish up project 2B
* Wednesday-Thursday
- Grading spreadsheet that will calculate your current grade in the class

Exercise 4

FIT100

- J avaScript Exerc ise 4
* Describe how you use a forloop to cycle through radio buttonsto find the one that has been checked.

Exercise 4
<label for="giraffe">Giraffe</label>

<input type="radio" id="giraffe" name="animals" />
<label for="zebra">Zebra</label>

<input type="radio" id="zebra" name="animals" />
<label for="lion">Lion</label>

<input type="radio" id="lion" name="animals" />

Exercise 4

FIT100
<label for="giraffe">Giraffe</label>

<input type="radio" id="giraffe"
name="animals" />
<label for="zebra">Zebra</label>

<input type="radio" id="zebra"
name="animals" />
<label for="lion">Lion</label>

<input type="radio" id="lion"
name="animals" />

2 옹
 FIT100

Exercise 4

<label for="giraffe">Giraffe</label>

<input type="radio" id="giraffe" name="animals" />
<label for="zebra">Zebra</label>

<input type="radio" id="zebra" name="animals" />
<label for="lion">Lion</label>

<input type="radio" id="lion" name="animals" />

Exercise 4

<label for="giraffe">Giraffe</label>
 <input type="radio" id="giraffe" name="animals" />
<label for="zebra">Zebra</label>

<input type="radio" id="zebra"
name="animals" />
<label for="lion">Lion</label>

<input type="radio" id="lion"

```
E
FIT100
for (var i = __; i < 3; i++)
{
        if(___)
        {
            //coding goes here
        }
}
```


Exerc ise 4

FIT100
for (var i = _ i i < 3; i++)
\{
if(document.getElementById.checked)
\{
//do something here
\}
\}

Instruction Execution
 Engines

- What computers can do
* Perform orexecute instructions to process information
- The computer must have instructions to follow

Exercise 4

FIT100
for (var i = _ ; i < 3; i++)
\{
if(document.getElementById)
\{
//do something here
\}
\}

Exercise 4

FIT100
for (var i = _ ; i < 3; i++)
for (var i = _ ; i < 3; i++)
\{
if(document.getElementById.checked == true)
\{
//do something here
\}
\}

Short list!

Instruction Execution

Engines

- What computers can't do
* Have no imagination orcreativity
* Have no intuition
* Have no sense of irony, subtlety, proportion, decorum, or humor
* Are not vindictive or cruel
* Are not purposeful
* Have no free will

Long list!

* Recent movies: Temminator, Matrix, AI

3
 Anatomy of a Computer

- Computers have five basic parts or subsystems
* Memory, control unit, anithmetic/logic unit (ALU), input unit, output unit

Byte-Size
 Memory Location

- A commonly used dia gram of computer memory represents the discrete locations as boxes (1 byte each).
- Address of location is displa yed above the box.
- Value orcontents of location is shown in the box.

Figure 9.3. Diagram of computer memory illustrating its key properties. 9.22

Memory (cont'd)

FIT100

- 1-byte memory locations can store one ASCll character, or a number less than 256 (0-255)
- Programmers use a sequence of memory locations together, ignoring the fact that they all have different addresses
* Blocks of four bytes are used as a unit so frequently that they are called
9-23 memory "words"

Random Access Memory

(RAM)
FIT100

- "Ra ndom a ccess" means the computer can refer to (access) the memory locations in any order
- Often measured in
megabytes(MB) - millions of bytes or giga bytes (GB) - billions of bytes
- Large memory is preferable because there is more space forprograms and data (which usually equates to lessl/O)
$9-24$

Control Unit

- Its circ uitry fetc hes an instruction from memory, decodes the instruction, and fetches the operands used in it
* A typical instruction might have the form

ADD 4000, 2000, 2080 op dest, src 1, sre2

* This instruction asks that the numbersstored in locations 2000 and 2080 be added together, and the result stored in location 4000
[4000] $=$ [2000] $+[2080]$
* Data/Operand Fetch step must get these two values and afterthey are added, Result Retum/Store step will store the answer in location 4000

Arithmetic/Logic Unit

 (ALU)- Performsthe math
* A circuit in the ALU can add two numbers
* Otherc irc uits do multiplic ation, comparisons, etc.
- Instructions that just transfer data usua lly don't use the ALU
- Data/Operand Fetch step of the Cycle gets the values that the ALU needs to work on (operands)
- After the ALU completes an operation, the answer is moved from the ALU to the destination memory address specified in the instruction
9-27 * taxDue =taxRate[WA]* subtotal;

\section*{| FITH |
| :--- |
| FIT100 |}

Figure 9.4. Illustration of a single ADD instruction producing different results depending on the contents of the memory locations referenced in the instruction.

2 5 Input Unit and Output Unit FIT100

- The wires and circuits through which information moves into and out of a computer
- Peripherals
* Connect to the computer input/output ports.
* Not considered part of the computer, but specialized gadgets that encode ordecode information between the computer and the physic al world.
- Modems, monitors, sc a nners, printers, keyboard,

computer puts away information when it computer puts away information when when it is needed again
9-29

The Peripherals

- Keyboard encodes keystrokes we type into binary form for the computer
- Monitor decodes information from the computer's memory and displays it on a lighted, colored screen
- Disks drives are used for both input and output-storage deviceswhere the .

A Device Driverfor Every Peripheral

- "Dumb"devic es provide basic physical translation to or from bina ry signals.
- Additional information from the computer is needed to make it operate intelligently.
- e.g., computer receives information that usertyped shift and w at the same time. It converts to a capital W. The software that converts is called the device driver.

The Program Counter:

 The Pc's PC- How doesthe computer detemmine which step to execute next?
- Address of the next instruction is stored in the Control Unit in the program counter (PC).
- Because instructions use 4 bytes of memory, the next instruction must be at PC $+4,4$ bytes further along in the sequence (in general).
- Computer adds four to the PC, so when the F/E Cycle gets back to Instruction Fetch step, the PC is "pointing at" the next instruction.

Instruction Interpretation

FIT100

- Process of executing a program
* Computer is interpreting our commands, but in its own language
- Before the F/E Cycle begins, some of the memory locations and the PC are visible in the control unit

9-33

[^0]
The Fetch/Execute Cycle

- A five-step cycle:
- Fetch/Execute Cycle

1. Instruction Fetch (IF)
2. Instruction Decode (ID)
3. Data Fetch (DF) / Operand Fetch (OF)
4. Instruction Execution (EX)
5. Result Retum (RR) / Store (ST)

Cycling the F/E Cycle

- Computers get their impressive capabilities by executing many of these simple instructions persecond
- The Computer Clock: Determines rate of F/E Cycle
* Measured in gigahert (G Hz), or billions of cyc les per second

How Important is Clock Speed?

- Modem computers try to start an instruction on each clock tick
- Pass off finishing instruction to other circ uitry (pipelining)
* Five instructionscan be in process at the same time
- Doesa 1 GHz clock really execute a billion instructions per second?
* Not a precise measurement. Computermay not be able to start an instruction on each tick, but may sometimes be able to start more than one instruction at a time

[^0]: Figure 9.5. Computer before executing an $A D D$ instruction.

