
5/20/2008

1

FIT100FIT100FIT100
Programming

• Why is programming fun?
• Finally, there is the delight of working in such a

tractable medium. The programmer, like the
t k l li htl d f poet, works only slightly re-moved from pure

thought-stuff. He builds his castles in the air,
from air, creating by exertion of the
imagination. Few media of creation are so
flexible, so easy to polish and rework, so
readily capable of realizing grand conceptual
structures.

Source: Frederick P. Brooks, Jr. The Mythical Man-Month Essays on
Software Engineering.

FIT100FIT100FIT100
Announcements

• Undergraduate Research
Symposium
∗ FridayFriday
∗ How many attended?

FIT100FIT100FIT100
Announcements

• Project 2B
∗ Due on Wednesday before 12 Noon

• If you don't submit the quiz before 11, y q
your answers are gone!!

• Aim at submitting quiz before 11

FIT100FIT100FIT100
Announcements

• Labs this week
∗ Monday-Tuesday

• Finish up project 2Bp p j
∗ Wednesday-Thursday

• Grading spreadsheet that will calculate
your current grade in the class

FIT100FIT100FIT100
Getting Help

FIT100FIT100FIT100
Exercise 4

• JavaScript Exercise 4
∗ Describe how you use a for loop to

cycle through radio buttons to find the y g
one that has been checked.

5/20/2008

2

FIT100FIT100FIT100
Exercise 4

<label for="giraffe">Giraffe</label>

<input type="radio" id="giraffe"
name="animals" />

<label for="zebra">Zebra</label>

<input type="radio" id="zebra"
name="animals" />

<label for="lion">Lion</label>

<input type="radio" id="lion"
name="animals" />

FIT100FIT100FIT100
Exercise 4

<label for="giraffe">Giraffe</label>

<input type="radio" id="giraffe"
name="animals" />

<label for="zebra">Zebra</label>

<input type="radio" id="zebra"
name="animals" />

<label for="lion">Lion</label>

<input type="radio" id="lion"
name="animals" />

FIT100FIT100FIT100
Exercise 4

<label for="giraffe">Giraffe</label>

<input type="radio" id="giraffe"
name="animals" />

<label for="zebra">Zebra</label>

<input type="radio" id="zebra"
name="animals" />

<label for="lion">Lion</label>

<input type="radio" id="lion"
name="animals" />

FIT100FIT100FIT100
Exercise 4

<label for="giraffe">Giraffe</label>

<input type="radio" id="giraffe"
name="animals" />

<label for="zebra">Zebra</label>

<input type="radio" id="zebra"
name="animals" />

<label for="lion">Lion</label>

<input type="radio" id="lion"
name="animals" />

FIT100FIT100FIT100
Exercise 4

for (var i = __; i < 3; i++)
{

if()if()
{

//coding goes here
}

}

FIT100FIT100FIT100
Exercise 4

for (var i = __; i < 3; i++)
{

if()if()
{

//coding goes here
}

}

5/20/2008

3

FIT100FIT100FIT100
Exercise 4

for (var i = __; i < 3; i++)
{

if()
{{

}

}

FIT100FIT100FIT100
Exercise 4

for (var i = __; i < 3; i++)
{

if(document.getElementById)
{{

//do something here
}

}

FIT100FIT100FIT100
Exercise 4

for (var i = __; i < 3; i++)
{

if(document.getElementById.checked)
{{

//do something here
}

}

FIT100FIT100FIT100
Exercise 4

for (var i = __; i < 3; i++)
{

if(document.getElementById.checked == true)
{{

//do something here
}

}

FIT100FIT100FIT100

Following Instructions

Principles of Computer
Operation, or How Computers

Work

FIT100FIT100FIT100

Instruction Execution
Engines

• What computers can do
∗ Perform or execute instructions to process

information
• The computer must have instructions to follow

9-18

The computer must have instructions to follow

Short list!

5/20/2008

4

FIT100FIT100FIT100

Instruction Execution
Engines

• What computers can't do
∗ Have no imagination or creativity
∗ Have no intuition

9-19

∗ Have no sense of irony, subtlety, proportion,
decorum, or humor

∗ Are not vindictive or cruel
∗ Are not purposeful
∗ Have no free will
∗ Recent movies: Terminator, Matrix, AI

Long list!

FIT100FIT100FIT100
Anatomy of a Computer

• Computers have five basic parts or subsystems
∗ Memory, control unit, arithmetic/logic unit

(ALU), input unit, output unit

9-20

FIT100FIT100FIT100
Memory

• Memory stores the program running and the
data on which the program operates

• Properties of memory:

9-21

∗ Discrete locations—1 byte per location!

∗ Addresses—For every memory location (byte)
• whole numbers starting with zero

∗ Values—Memory locations store values.

∗ Finite capacity—Limited size—data may not "fit" in the
memory location.

• Overflow conditions, buffer overruns

FIT100FIT100FIT100

Byte-Size
Memory Location

• A commonly used diagram of computer
memory represents the discrete locations
as boxes (1 byte each).

9-22

• Address of location is displayed above
the box.

• Value or contents of location is shown in
the box.

FIT100FIT100FIT100
Memory (cont'd)

• 1-byte memory locations can store
one ASCII character, or a number
less than 256 (0 - 255)

9-23

• Programmers use a sequence of
memory locations together, ignoring
the fact that they all have different
addresses
∗ Blocks of four bytes are used as a unit

so frequently that they are called
memory "words"

FIT100FIT100FIT100

Random Access Memory
(RAM)

• "Random access" means the computer
can refer to (access) the memory
locations in any order

9-24

• Often measured in
megabytes (MB) – millions of bytes or
gigabytes (GB) – billions of bytes

• Large memory is preferable because
there is more space for programs and
data (which usually equates to less I/O)

5/20/2008

5

FIT100FIT100FIT100
Control Unit

• Its circuitry fetches an instruction from memory,
decodes the instruction, and fetches the
operands used in it
∗ A typical instruction might have the form

9-25

yp g
ADD 4000, 2000, 2080 op dest, src1, src2

∗ This instruction asks that the numbers stored in locations
2000 and 2080 be added together, and the result
stored in location 4000 [4000] = [2000] + [2080]

∗ Data/Operand Fetch step must get these two values
and after they are added, Result Return/Store step will
store the answer in location 4000

FIT100FIT100FIT100

9-26

FIT100FIT100FIT100

Arithmetic/Logic Unit
(ALU)

• Performs the math
∗ A circuit in the ALU can add two numbers
∗ Other circuits do multiplication, comparisons, etc.

i j f

9-27

• Instructions that just transfer data usually don't
use the ALU

• Data/Operand Fetch step of the Cycle gets the
values that the ALU needs to work on (operands)

• After the ALU completes an operation, the
answer is moved from the ALU to the destination
memory address specified in the instruction
∗ taxDue = taxRate[WA] * subtotal;

FIT100FIT100FIT100

Input Unit and Output Unit
(I/O)

• The wires and circuits through which
information moves into and out of a
computer

9-28

• Peripherals
∗ Connect to the computer input/output ports.
∗ Not considered part of the computer, but

specialized gadgets that encode or decode
information between the computer and the
physical world.

• Modems, monitors, scanners, printers, keyboard,
mouse, digitizing pad, mic, speakers

FIT100FIT100FIT100
The Peripherals

• Keyboard encodes keystrokes we type
into binary form for the computer

• Monitor decodes information from the

9-29

computer's memory and displays it on a
lighted, colored screen

• Disks drives are used for both input and
output—storage devices where the
computer puts away information when it
is not needed, and can retrieve from
when it is needed again

FIT100FIT100FIT100

A Device Driver for
Every Peripheral

• "Dumb" devices provide basic physical
translation to or from binary signals.

• Additional information from the computer

9-30

is needed to make it operate intelligently.
• e.g., computer receives information that

user typed shift and w at the same time. It
converts to a capital W. The software that
converts is called the device driver.

5/20/2008

6

FIT100FIT100FIT100

The Program Counter:
The Pc's PC

• How does the computer determine which step
to execute next?

• Address of the next instruction is stored in the
Control Unit in the program counter (PC)

9-31

Control Unit in the program counter (PC).
• Because instructions use 4 bytes of memory, the

next instruction must be at PC + 4, 4 bytes further
along in the sequence (in general).

• Computer adds four to the PC, so when the F/E
Cycle gets back to Instruction Fetch step, the PC
is "pointing at" the next instruction.

FIT100FIT100FIT100

Branch and
Jump Instructions

• The instruction may include an
address to go to next. This changes
the PC, so instead of going to PC +4

t ti ll th t "j "

9-32

automatically, the computer "jumps"
or "branches" to the specified
location.

FIT100FIT100FIT100
Instruction Interpretation

• Process of executing a program
∗ Computer is interpreting our

commands, but in its own language

9-33

• Before the F/E Cycle begins, some of
the memory locations and the PC
are visible in the control unit

FIT100FIT100FIT100

9-34

FIT100FIT100FIT100
The Fetch/Execute Cycle

• A five-step cycle:
1. Instruction Fetch (IF)
2 Instruction Decode (ID)

9-35

2. Instruction Decode (ID)
3. Data Fetch (DF) / Operand Fetch

(OF)
4. Instruction Execution (EX)
5. Result Return (RR) / Store (ST)

FIT100FIT100FIT100
Animation

• Fetch/Execute Cycle

5/20/2008

7

FIT100FIT100FIT100
Cycling the F/E Cycle

• Computers get their impressive
capabilities by executing many of
these simple instructions per second

9-37

• The Computer Clock: Determines
rate of F/E Cycle
∗ Measured in gigahertz (GHz), or billions

of cycles per second

FIT100FIT100FIT100

How Important is Clock
Speed?

• Modern computers try to start an instruction on
each clock tick

• Pass off finishing instruction to other circuitry
(pipelining)

9-38

(pipelining)
∗ Five instructions can be in process at the same time

• Does a 1 GHz clock really execute a billion
instructions per second?
∗ Not a precise measurement. Computer may not be

able to start an instruction on each tick, but may
sometimes be able to start more than one instruction at
a time

