- Mistakes, obviously, show us what needs improving. Without mistakes, how would we know what we had to work on?

Peter Mc Willia ms, Life 101

- Mistakesare the portals of discovery.
f ames J oyce (1882-1941)

Iteration Principles

Again, and again, and again

JavaScript

- We are now in a foreign land where you don't speak the language
- You recognize some sign posts-html-but JavaScript is brand new

Similarities

- Upload to Web space (Students server)
- HTML
- View in any Web browser
- Can use Dreamweaver orfree downloads:
* NotePad + +, NotePad2, jEdit
* Links on FIT100 Computing page

Why JavaScript?

- Javascript is a programming language that many Web browsers can understand, or interpret.
- J a va Scripts can be written with a simple text editor like NotePad++ or TextWrangler, or Dreamweaver, and tested in a Web browser.
- A J avascript program is a list of commands or statements that the browser runs to add features to an HTML document.

The goals of programming:

- Increase user interaction in three ways:
* Accept userinput.
- A user can invoke actions and/or enter data Programmers calls these actions and/or data user input, or simply input.
* Calculate using userinput.
- The computer can calculate a number, create some text, etc.
* Display results.
- The results shown to the user are called output data, or simply output. Sometimes the output will change the graphic al user interface (GUI) of the program, which changes what the user sees and can do with the program

Running Javascript

- How the Web browser reads an HTML document that containsJ a va sc ript:

3. If the browser encounters a script element, it executes the code that is specified by the src attribute. If there is no src attribute defined, the browser executes the code that is in the contents of the script element.
4. If the script generates HTML output, this output is then added to the HTML document tree

Running JavaScripts

FIT100

- How the Web browser reads an HTML document that conta ins J a va sc ript:

1. The web browser starts to read through the HTML document from the first character in the top left to the last character in the bottom night.
2. As the web browser reads through the document, the browser builds a document tree from the HTML elements it encounters.

\section*{| Shady Grove | Aeolian |
| :--- | :--- |
| Over | |} | Over the River, Charlie | Dorian |
| :--- | :--- |

Play it again, Sam.
ITERATION

Definitions

- Iteration, or looping, is the process of repetition:
* looping through a series of statements to repeat them

Major Types of Iterations

- Forloop
* Count up
*Count down
-While loop
* Count up
* Count down
- Do...While

tition is good
FOR LOOPS

The for Loop Basic Syntax

FIT100

- Text that is not in metabrackets \diamond must be given literally
- The whole sequence of statements in the statement list is performed for each iteration
* Computercompletesthe whole statement sequence of the <tatement list>before beginning the next iteration

The Iteration Variable
FIT100

- C ontrol spec ific ation: the three operations in the parentheses of the for loop
* Control the number of times the loop iterates
* by using an iteration variable (must be declared)

JavaScript Rules for for Loops
(cont'd)
FIT100

- The World-Famous Iteration
* J avaScript uses the same for loop statement as other programming languages, so thousa nds of loops with this struc ture are written every day:

for ($\mathbf{j}=0$; \mathbf{j} < n ; $\mathbf{j + +}$) \{...\}

* Most frequently written for loop of all time
* Easy to see iteration count:
- Always n times

The Iteration Variable

 (cont'd)Example:
 <statement list>
\}

- Here's what happens:
* The first operation is the <initialization>
- Sets the iteration variable's value for the first iteration of the loop. Done only once
* The next operation is <continuation>
- Test. If the test has a false outcome, the <statement list> is skipped.
- If the test has a true outcome, the <statement list> is performed. When the statements are complete, the
* <next iteration>operation is performed
- Repeats with the continuation test, performs same sequence of steps.

FIT100
Running through a for loop

Table 21.1 The sequence of operations on j from the for loop with control specification ($\mathrm{j}=1 ; \quad \mathrm{j}=3$; $\quad \mathrm{j}=\mathrm{j}+1$)

Operation	Operation Result	Role
$j=1$	j 's value is 1	Initialize iteration variable
$j<=3$	true, j is less than 3	First <continuation> test, continue
$j=j+1$	j 's value is 2	First <next iteration> operation
$j<=3$	true, j is less than 3	Second <continuation> test, continue
$j=j+1$	j 's value is 3	Second <next iteration> operation
$j<=3$	true, j is equal to 3	Third <continuation> test, continue
$j=j+1$	j's value is 4	Third <next iteration> operation
$j<=3$	false, j is greater than 3	Fourth <continuation> test, terminate

FIT100

How a for Loop Works

- Consider a computation on declared variables \mathbf{j} and text

```
text = "She said ";
for ( j = 1; j <= 3; j = j + 1)
    {
        text = text + "Never! ";
}
alert(text);
```


How a for Loop Works

FIT100

- Consider a computation on declared variables j and text

How a for Loop Works

- Consider a computation on declared variables \mathbf{j} and text

How a for Loop Works

FIT100

- Consider a computation on declared variables \mathbf{j} and text

How a for Loop Works

- Demo:

```
text = "The two-year-old said ";
for ( j = 1; j <= 3; j = j + 1)
{
    text = text + "No! ";
}
alert(text);
```


JavaScript Rules for for Loops

- The Iteration Va ria ble: $\mathbf{j}=\mathbf{1}_{\text {; }}$
* Must be declared, and follow rulesfor variable identifiers
* i , j , and k are the most common choices
- The Sta rting Point
* Iteration can begin a nywhere, including negative numbers

JavaScript Rules for for Loops

- Continuation/Termination Test $\mathbf{j}<=3$
* Test is a ny expression resulting in a Boolean value (true/false)
* Continuation must involve iteration variable to avoid infinite loop
- Step Size $\mathbf{j}=\mathbf{j}+\mathbf{1}$
* Amount of change from one iteration to the next
* Often called the increment or decrement
- Inc rement: j+1
- Decrement: j-1

Experiments with Flipping Coins

- To practice for loops, we experiment with flipping electronic coins
- We can use the function randNum(2), which retums either 0 (tails) or 1 (heads)
- Set up an iteration in which our randNum() function is performed 100 times, and statistic s gathered

Demonstration
FIT100

- Coin toss...

Experiments with Flipping
 Coins (cont'd)

- i ranges from 0 to 99 , so the loop iterates 100 times
- Conditional statement checks and recordsthe outcome of random number generation
- When random number is 1, count of heads is increased by 1 (heads++;)
- When random number is 0 , count of tails is increased by 1 (tails++;)

Experiments with Flipping

 Coins (cont'd)- A Nested Loop
* To run several trials, consider the entire loop we just looked at as one Trial
* Create a nother for loop containing this Trial unit, adding a couple of needed statements
* We have a loop within a loop (nested loop) which ca uses the Trial loop (0-99) to run five times

Experiments with Flipping Coins (cont'd)

- A Diagram of Results
* To show how faroff a perfect 50-50 score a trial is, display with diagram
* Compute the distance from 50-50 and show that number using asterisks

text $=$ text $+1 * '$;
\}
text $=$ text + '\n';
alert(text);
- Closed book
- Your own work
- Put away
* Laptops
* Cell phones
* Notebooks
* Books
* Etc.
- Stop talking
- Eyes to yourself

Quick Write

- Raise your hand if you have a question alert(text);

