- Mistakes, obviously, show us what need s imp roving. Without mistakes, how would we know what we had to work on?
~Peter Mc Willia ms, Life 101
- Mista kes a re the porta ls of disc overy. - a amesJ oyce (1882-1941)

- New labs with quizzes
* Take the quiz a s ma ny times a s you want to improve your score
* Bring questions to office hours a nd drop-in labs
- Drop-in la bs on Wednesdays before lecture a re very sparsely attended-2 to 3 people! 10:30am to $12: 30 \mathrm{pm}$ in MGH 430

- 」a va Sc ript Storyteller

Again, and again, and again

Looping back through some fundamental concepts

- We are now in a foreign land where you don't speak the language
- You recognize some sign posts-html-but J ava Script is brand new

Smilarities

- Upload to Web space (Students server)
- HTML
- View in a ny Web browser
- Can use Dreamweaver or free downloads:
* NotePad++, NotePad2, jEdit
* Links on FIT100 Computing page

Difierences

- Validating doesn't help you fix J a va Script
- Test in Firefox
* Error console
- Javascript is a programming language that many Web browsers can understand, or intepret.
- J a va Scripts can be written with a simple text editor like NotePad ++ or TextWrangler, or Dreamweaver, and tested in a Web browser.
- A J avascript program is a list of commands or statements that the browser runs to add features to an HTML document.
- Increase user interaction in three ways:
* Accept user input.
- A user can invoke a ctions and/or enter data. Programmers calls these a ctions and/or data userinput, or simply input.
* Calculate using user input.
- The computer can calculate a number, create some text, etc.
* Display results.
- The results shown to the user are called output data, or simply output. Sometimes the output will change the graphical user interface (GUI) of the program, which changes what the user sees and can do with the program.

- How the Web browser reads an HTML document that c onta ins J a va sc ript:

1. The web browser starts to read through the HTML document from the first character in the top left to the last character in the bottom right.
2. Asthe web browser reads through the document, the browser builds a document tree from the HTML elements it encounters.

- How the Web browser readsan HTML document that c onta ins J a va sc ript:

3. If the browser enc ounters a script element, it exec utes the code that is specified by the src attribute. If there is no src attribute defined, the browser executes the code that is in the c ontents of the script element.
4. If the script generates HTML output, this output is then added to the HTML document tree.

Play it aga in, Sam.

- Iteration, or looping, is the process of repetition:
* looping through a series of statements to repeat them

- For loop
* Count up
* Count down
- While loop
* Count up
* Count down
- Do...While

Repetition is good

for

for (<initialization>; <c ontinuation>; <next itera

\{
<statement list>
\}

- Text that is not in meta brackets \diamond must be given literally
- The whole sequence of sta tements in the statement list is performed for each iteration
* Computer completes the whole statement sequence of the <statement list> before beginning the next iteration

- C ontrol spec ific ation: the three operations in the parentheses of the for loop
* Control the number of times the loop iterates
* by using an iteration va ria ble (must be declared)

for

- The World-Famous Iteration
* I a va Sc nipt uses the same for loop statement as other programming la nguages, so thousa nds of loops with this structure a re written every day:
\square
* Most frequently written for loop of a ll time
* Easy to see iteration count:
- Always n times

for (j = 1 ; j <= 3
 <statement list>

\}

- Here's what happens:
* The first operation is the <initia lization>
- Sets the iteration variable's value forthe first iteration of the loop. Done only once.
* The next operation is <continuation>
- Test. If the test has a false outcome, the <statement list> is skipped.
- If the test has a true outc ome, the <sta tement list> is performed. When the statements a re complete, the
* <next iteration>operation is performed
- Repeats with the continuation test, performs same sequence of steps.

Table 21.1 The sequence of operations on j from the for loop with control specification ($j=1 ; \quad j<=3 ; \quad j=j+1$)

Operation	Operation Result	Role
$\mathrm{j}=1$	j 's value is 1	Initialize iteration variable
$\mathrm{j}<=3$	true, j is less than 3	First <continuation> test, continue
$\mathrm{j}=\mathrm{j}+1$	j 's value is 2	First <next iteration> operation
$\mathrm{j}<=3$	true, j is less than 3	Second <continuation> test, continue
$\mathrm{j}=\mathrm{j}+1$	j 's value is 3	Second <next iteration> operation
$\mathrm{j}<=3$	true, j is equal to 3	Third <continuation> test, continue
$\mathrm{j}=\mathrm{j}+1$	j 's value is 4	Third <next iteration> operation
$\mathrm{j}<=3$	false, j is greater than 3	Fourth <continuation> test, terminate

How a for Loop Works

- Consider a computation on declared variables j and text
text = "She said ";
for ($j=1 ; ~ j<=3 ; j=j+$ \{
text $=$ text + "Never! ";
\}
alert(text);

How a for Loop Works

- Considera computation on declared variables j and text
text = "She said ";
for $(i=1 ; j<=3 ; j=j$
\} text $=$ t\&xt + "Never! ";
alert(text);

How a for Loop Works

- Consider a computation on declared variables j and text
text = "She said ";
for ($j=1$; $i<=3$; $j=j$ \{
text $=$ text + "Never $!"$
Stop condition
\}

How a for Loop Works

- Considera computation on declared variables j and text
text = "She said ";
for (j = 1; j <= 3; $\quad=\mathrm{j}+1$ \{
text $=$ text + "Never!
\}
alert(text);

Step size or increment

How a for Loop Works

- Demo:
text = "The two-year-old said for (j = 1; j <= 3; j = j + \{
text = text + "No! ";
$\}$
alert(text);

for

- The Iteration Va riable: $\mathrm{j}=1$
* Must be declared, and follow rulesfor variable identifiers
* i, j, and k are the most common choices
- The Starting Point
* Iteration can begin anywhere, including negative numbers

for

- Continuation/Temination Test $j<=$
* Test is any expression resulting in a Boolean value (true/false)
* Continuation must involve iteration variable to a void infinite loop
- Step Size
$j=j+$
* Amount of change from one iteration to the next
* Often called the increment or decrement
- Increment: j + 1
- Decrement: j-1

- To practice for loops, we experiment with flipping electronic coins
- We can use the function randNum(2), which retums either 0 (ta ils) or 1 (heads)
- Set up an iteration in which our randNum() function is performed 100 times, a nd sta tistic s ga thered

```
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
            <meta http-equiv="content-type"
            content="text/html;charset=utf-8" />
    <meta http-equiv="Content-Style-Type" content="text/css" />
    <title>For loop example with coin toss</title>
    <script type="text/javascript">
    var heads=0, tails=0; //Counters
        var i; //Iteration variable
    for (i=0; i<100; i++ )
        {
            if (randNum(2) == 1)
                heads++;
            else
                tailo++;
        }
        alert("Heads: " + heads + " and Tails: " + tails);
        function randNum(range)
        {
            return Math.floor(range*Math.random());
        }
    </script>
</head>
```


- i ranges from 0 to 99, so the loop iterates 100 times
- C onditional sta tement checks a nd records the outcome of random number generation
- When random number is 1, c ount of heads is increased by 1 (heads++;)
- When random number is 0, count of tails is increased by 1 (tails++;)

- A Nested Loop
* To run several trials, consider the entire loop we just looked at as one Trial
* Create a nother for loop conta ining this Trial unit, adding a couple of needed statements
* We have a loop within a loop (nested loop) which causes the Trial loop (0-99) to run five times

- A Diagram of Results
* To show how far off a perfect 50-50 score a trial is, display with diagram
* Compute the distance from 50-50 and show that number using asterisks

```
text = text + 'Trial ' + j + ': ';
for (i = 0; i < (Math.abs(heads-50));
    text = text + '*';
}
text = text + '\n';
alert(text);
```


- Closed book
- Your own work
- Put away
* Laptops
* Cell phones
* Notebooks
* Books
* Etc.
- Sto p ta lking
- Eyes to yourself
- Raise your hand if you have a question

