Announcements

- Chapter 10 for today * Chapter 9 , if 10 seemed confusing
- Chapters 18 and 19 for Friday
* We're going to start skipping around
* Pay attention to the online calendar
- It's the only up-to-date calendar
- Throw away your printed syllabus!

- Color Synthesis site
* http://www.telecable.es/personales/alberto9/color/index.htm

A little "bit" more..

DIGITAL REPRESENTATION

Digital Colors

What's The Plan? Algorithmic Thinking

Step-by-step directions for whatever someone, or the computer, needs to do

Algorithm

- A precise, systematic method for producing a specified result
- In real life we do this all the time:

1. Input specified

* Data to be transformed during the computation to produce the output
* Must spec ify type, a mount, and form of data

2. Output specified

* Data resulting from the computationintended result
* It is possible to have no output

10-9

Language in Algorithms

- Natural language
* Forpeople, we use a natural language like English
* Ambiguity is common in natural language
- Programming Language
* Formal languages designed to express a lgo rithms
* Prec isely defined; no ambiguity

Five Essential Properties

(cont'd)
3. Definiteness

* Specify the sequence of events
* Details of each step, including how to handle errors

4. Effectiveness

* The operations are doable

5. Finiteness

* Must eventua lly stop

10-10

Context Matters

- Program can fulfill five properties of an algorithm, be una mbiguous, and still not work right because it is executed in the wrong context
* e.g., last name in Westem countries means fa mily name; in Asian countries it may mean given name
- Context matters: Driving instructions
* "From the Limmat River go to Bahnhof Strasse and tum nght."
* Assumesyou are traveling in a specific direction. If you are not, the directions will fail.

0-12

Figure 10.1. Diagram of approaching a street (Bahnhof Strasse) from different directions, giving the "turn right" instruction different meanings.

Program vs. Algorithm

- A program is an algorithm that has been customized to
* solve a specific task
- undera specific set of circ umstances
- using a specific language
- Algorithm is a general method; program is a specific method
10-14

An Algorithm: Alphabetize CDs

- Imagine CDs in a slotted rack, not organized
- You want to alphabetize by name of group, performing musician, or composer
- How do you solve this problem?

Analyzing Alphabetize CDsAlgorithm

- Illustrates the five basic properties of a lgorithms
* Inputs and Outputs were listed
* Each instruction was defined precisely (definiteness)
* Operations are effective because they are simple and mechanic ally doable
* Alphabetizing is mechanical, so our algorithm is effective
* Finiteness is satisfied because there are only a finite number of slots that can be paired, so instructions 4, 5 , and 6 cannot be repeated indefinitely

10-17

A Deeper Analysis

FIT100

- Structural features
* Two instructions, 5 and 6, in which the agent is directed to go back and repeat instructions. This is called a loop.
* Loopsand Tests
- A loop must include a test to determine whether the instructions should be repeated one more time
* Assumptions
- We assume that

The CD rack is full (instructions do not handle the case of an empty slot)
10-18 point

2 518

Exchange Sort Algorithm

- The Alphabetize CDs exa mple illustrates the standard Exc hange Sort algorithm
* The idea of companing pairs of items chosen in a particular way, exchanging them if they are out of order, and continuing to sweep through the items
* We could use the same algonthm to sort on a different principle

Announcements

- Chapters 18 and 19 for Friday

