

Announcements

- Chapter 10 for today
 - * Chapter 9, if 10 seemed confusing
- Chapters 18 and 19 for Friday
 - * We're going to start skipping around
 - Pay attention to the online calendar
 - It's the only up-to-date calendar
 - Throw away your printed syllabus!

Announcements

• This week's Quiz is canceled

A little "bit" more....

DIGITAL REPRESENTATION

Digital Colors

- Color Synthesis site
 - * http://www.telecable.es/personales/alberto9/color/index.htm

Video

- NetPoint Video on Digital Imaging
 - * http://uweoconnect.extn.washington.edu/digitalimagingdslfit7/

What's The Plan? Algorithmic Thinking

Step-by-step directions for whatever someone, or the computer, needs to do

Algorithm

- A precise, systematic method for producing a specified result
- In real life we do this all the time:

Video

Algorithms

* http://uweoconnect.extn.washington.edu/algoithmsdslfit7/

Five Essential Properties of Algorithms

Input specified

- Data to be transformed during the computation to produce the output
- Must specify type, amount, and form of data

Output specified

- Data resulting from the computation intended result
- It is possible to have no output

Five Essential Properties (cont'd)

3. Definiteness

- Specify the sequence of events
- Details of each step, including how to handle errors

4. Effectiveness

* The operations are doable

5. Finiteness

Must eventually stop

Language in Algorithms

- Natural language
 - * For people, we use a natural language like English
 - * Ambiguity is common in natural language
- Programming Language
 - * Formal languages designed to express algorithms
 - * Precisely defined; no ambiguity

Context Matters

- Program can fulfill five properties of an algorithm, be unambiguous, and still not work right because it is executed in the wrong context
 - e.g., last name in Western countries means family name; in Asian countries it may mean given name
- Context matters: Driving instructions
 - * "From the Limmat River go to Bahnhof Strasse and turn right."
 - Assumes you are traveling in a specific direction. If you are not, the directions will fail.

Figure 10.1. Diagram of approaching a street (Bahnhof Strasse) from different directions, giving the "turn right" instruction different meanings.

Program vs. Algorithm

- A program is an algorithm that has been customized to
 - * solve a specific task
 - under a specific set of circumstances
 - -using a specific language
- Algorithm is a general method; program is a specific method

An Algorithm: *Alphabetize CDs*

- Imagine CDs in a slotted rack, not organized
- You want to alphabetize by name of group, performing musician, or composer
- How do you solve this problem?

Animation

• Sorting CDs

Analyzing Alphabetize CDs Algorithm

- Illustrates the five basic properties of algorithms
 - Inputs and Outputs were listed
 - Each instruction was defined precisely (definiteness)
 - Operations are effective because they are simple and mechanically doable
 - Alphabetizing is mechanical, so our algorithm is effective
 - Finiteness is satisfied because there are only a finite number of slots that can be paired, so instructions 4, 5, and 6 cannot be repeated indefinitely

A Deeper Analysis

- Structural features
 - * Two instructions, 5 and 6, in which the agent is directed to go back and repeat instructions. This is called a *loop*.
 - * Loops and Tests
 - A loop must include a test to determine whether the instructions should be repeated one more time
 - * Assumptions
 - We assume that
 - The CD rack is full (instructions do not handle the case of an empty slot)
 - The word "following" means a slot further from the start point

Figure 10.3. Flowchart of Alphabetize CDs. Operations are shown in rectangles; decisions are shown in diamonds. Arrows indicate the sequencing of the operations.

Stop

Exchange Sort Algorithm

- The Alphabetize CDs example illustrates the standard Exchange Sort algorithm
 - * The idea of comparing pairs of items chosen in a particular way, exchanging them if they are out of order, and continuing to sweep through the items
 - We could use the same algorithm to sort on a different principle

Announcements

Chapters 18 and 19 for Friday