

Test Your Tech

A local area network is:

- A. An exclusive social club.
- B. A group of computers, usually in a single building, connected by cables.
- C. Local television affiliates of the big networks.

Test Your Tech

A local area network is:

- A. An exclusive social club.
- B. A group of computers, usually in a single building, connected by cables.
- C. Local television affiliates of the big networks.

Special Guests

- Scott Barker, Director of IT and Chair of the Informatics program for the Information School (iSchool)
- Marshall Bjerke, Senior, Informatics

Announcements

- Deadlines at noon today
 - * HW1 and Lab 2
- Watch for your grades on MyUW's Student tab in the CS pane
- Last week's quiz:
 - * Students who answered that RAM is measured in MB *or* GB will receive credit for that question.

Announcements

- Videocasts of the course are available within a couple hours after each lecture
 - * Linked at top of Calendar on the course Web site

Announements

- Office hours
 - * Listed on course Web site's Home page
 - * Maps to our offices for office hours
- In addition to office hours
 - * Drop-in labs

Networking

More than just a social interaction

Networks...

Computers are useful alone, but are better when connected (networked)

- * Access more information and software than is stored locally
- * Help users to communicate, exchange information ... changing ideas about social interaction
- * Perform other services -- printing, Web,...

UW's networks move more than trillion bytes per day

Networking Changes Life

The Internet is making fundamental changes

- Nowhere is remote—access to info is no longer bound to a place
- 2. Connecting with others—email is great
- 3. Revised human relationships—too much time spent online could be bad
- 4. English becoming a universal language
- 5. Enhanced freedom of speech, assembly

Can you think of others?

Network Structure

Networks are structured differently based (mostly) on how far apart the computers are

- * Local area network (LAN) -- a small area such as a room or building
- * Wide area networks (WAN) -- large area, e.g. distance is more than 1 Km

Internet: all of the wires, fibers, switches, routers etc. connecting named computers

Basic Types of Networks

Network Type	Differentiating Factors			
Peer-to-Peer	No computer running server software			
Server-Based Networks	 Computer running server software manages network traffic 			
• Local Area Network (LAN)	 Limited geographical area One-time capital cost (wire or fiber optics cable installation) 			
• Wide Area Network (WAN)	 Across town or across the globe Third-party service provider (monthly \$\$) More bandwidth = more expense Connects to LANs with a router 			
Campus Network	One-time capital expenseBuildings in close proximity			
 Metropolitan Area Network (MAN) 	 Clusters of buildings in close proximity separated from other clusters Third-party service provider (monthly \$\$) 			

Protocol Rules!

To communicate computers need to know how to set up the info to be sent and interpret the info received

- * Communication rules are a protocol
- * Example protocols
 - EtherNet for physical connection in a LAN
 - TCP/IP—transmission control protocol / internet protocol—for Internet
 - HTTP—hypertext transfer protocol—for Web

LAN in the Lab

EtherNet is a popular LAN protocol

• Recall, it's a "party" protocol

Connection to campus
network infrastructure

Typical MGH or OUGL Lab

PC PC PC PC PC

Ether Net
Cable

Campus & The World

The campus subnetworks interconnect computers of the UW domain which connects to Internet via a gateway

IP—Like Using Postcards

Information is sent across the Internet using IP—Cerf uses postcard analogy

- Break message into fixed size units
- Form IP packets with destination address,
 sequence number and content addr # data
- Each makes its way separately to destination, possibly taking different routes
- Reassembled at destination forming msg

Taking separate routes lets packets by-pass congestion and out-of-service switches

A Trip to Switzerland

A packet sent from UW to ETH (Swiss Fed. Tech. University) took 21 hops

Нор		IP Address	Node Name	Location		ms		Network	
0		128.95.1.207	spiff.cseresearch.cs.washington.edu	1) 4 / 0 /			7	University of Washington WASHINGTON	
1		128.95.1.100	-	JW Gat	ew	vav		University of Washington WASHINGTON	
2		140.142.150.2	uwbr2-GE0-1.cac.washington.edu					University of Washington UW-SEA	
3			hnsp1-wes-ge-0-0-0-0.pnw-gigapop.net			0		Verio, Inc. VRIO-198-106	
4		198.48.91.78	abilene-pnw.pnw-gigapop.net			5		University of Washington UW-SEA29	
5		198.32.11.124	sttlng-sttl.abilene.ucaid.edu			0		Exchange Point Blocks NET-EP-1	
6		198.32.8.50	dnvr-sttl.abilene.ucaid.edu			35		Exchange Point Blocks NET-EP-1	
7		198.32.11.111	-			27		Exchange Point Blocks NET-EP-1	
8			kscy-dnvr.abilene.ucaid.edu			40		Exchange Point Blocks NET-EP-1	
9			kscyng-kscy.abilene.ucaid.edu			34		Exchange Point Blocks NET-EP-1	
10			iplsng-kscyng.abilene.ucaid.edu			281		Exchange Point Blocks NET-EP-1	
11		198.32.8.76	chinng-iplsng.abilene.ucaid.edu			52		Exchange Point Blocks NET-EP-1	
12		198.32.8.83	nycmng-chinng.abilene.ucaid.edu			72		Exchange Point Blocks NET-EP-1	
13			nycm-wash.abilene.ucaid.edu			68		Exchange Point Blocks NET-EP-1	
14		62.40.103.253	abilene-gtren.de2.de.geant.net	(United Kingdor		165		IP allocation for GEANT network	
15			de.it1.it.geant.net	(United Kingdor		171		IP allocation for GEANT network	
16		62.40.96.33	it.ch1.ch.geant.net	(United Kingdor		183		IP allocation for GEANT network	
17		62.40.103.18	swiCE2-P6-1.switch.ch	(United Kingdor		178		IP allocation for GEANT network	
18		130.59.36.42	swiEZ2-G2-2.switch.ch	(Switzerland)		187		SWITCH Teleinformatics Services SWITCH-LAN	
19			rou-eth-switch-1-giga-to-switch.ethz.ch	(Switzerland)		192		Swiss Federal Institute of Technology ETH-NET6	
20		129.132.99.19	rou-rz-1-mega-transit-2.ethz.ch	(Switzerland)		188		Swiss Federal Institute of Technology ETH-ETHER	
21		129.132.1.15	eth.ch	(Switzerland)		192		Swiss Federal Institute of Technology ETH-ETHER	
Roun	Roundtrip time to eth.ch, average = 192ms, min = 187ms, max = 204ms 14-Nov-02 1:39:08 PM								

TCP/IP

Packet-Switching Animation

Check Internet Hops

Interested?

- * Find software called Visual Routes (personal evaluation copies are free) at http://www.visualroute.com
- * Download a copy of the software
- * Install software and type in foreign URLs
 - Switzerland eth.ch
 - Australia www.usyd.edu.au
 - Japan kyoto-u.ac.jp
 - South Africa www.uct.ac.za

Use Google to find foreign computers

Peers

Naming Computers I

People name computers by a domain name -- a hierarchical scheme that groups like computers

.edu All educational computers
.washington.edu All computers at UW
dante.washington.edu A UW computer
.ischool.washington.edu iSchool computers
.cs.washington.edu CSE computers
june.cs.washington.edu A CSE computer

Domains begin with a "dot" and get "larger" going right

Naming Computers II

Computers are named by IP address, four numbers in the range 0-255

cse.washington.edu: 128.95.1.4

ischool.washington.edu: 128.208.100.150

- * Remembering IP addresses would be brutal for humans, so we use domains
- * Computers find the IP address for a domain name from the *Domain Name System* -- an IP address-book computer

A computer needs to know IP address of DNS server!

Domains

.edu .com .mil .gov .org .net domains are "top level domains" for the US

- * Recently, new TLD names added
- * Each country has a top level domain name: .ca (Canada), .es (Spain), .de (Germany), .au (Australia), .at (Austria), .us

The FIT book contains the complete list

Logical vs Physical

There are 2 ways to view the Internet

- Humans see a hierarchy of domains relating computers -- logical network
- Computers see groups of four number IP addresses -- physical network
- Both are ideal for the "users" needs
- The Domain Name System (DNS) relates the logical network to the physical network by translating domains to IP addresses

Client/Server Structure

The Internet computers rely on the client/server protocol: servers provide services, clients use them

- Sample servers: email server, web server, ...
- UW servers: dante, courses, www, student,...
- Frequently, a "server" is actually many computers acting as one, e.g. dante is a group of more than 50 servers

Protocol: Client packages a request, and sends it to a server; Server does the service and sends a reply

World Wide Web

World Wide Web is the collection of servers (subset of Internet computers) & the information they give access to

- Clearly, WWW ≠ Internet
- The "server" is the web site computer and the "client" is the surfer's browser
- Many Web server's domain names begin with www by tradition, but any name is OK
- Often multiple server names map to the same site: MoMA.org and www.MoMA.org

24

Client/Server Interaction

For Web pages, the client requests a page, the server returns it: there's no connection, just two transmissions

Servers serve many clients; clients visit many servers

Dissecting a URL

Web addresses are URLs, *uniform* resource locator, an IP address+path

URLs are often redirected to other places;
 e.g. http://www.cs.washington.edu/100/ goes to

http://www.cs.washington.edu/education/courses/100/04wi/index.htm

protocol = http://

Web server = www

domain = .cs.washington.edu

path = /education/courses/100/04wi/ directories (folders)

file = index

26

Summary

Networking is changing the world Internet: named computers using TCP/IP WWW: servers providing access to info

- * Principles
 - Logical network of domain names
 - Physical network of IP addresses
 - Protocols rule: LAN, TCP/IP, http, ...
 - Domain Name System connects the two
 - Client/Server, fleeting relationship on WWW