Announcements

Project 3 will be assigned Friday
Midterm 2 will be returned in sections
Today & Thursday
Spreadsheets

Spreadsheets are a powerful abstraction for organizing data and computation
An Array of Cells

A spreadsheet is a 2 dimensional array of cells ... it’s 3D with multiple sheets

* The idea is that the rows or columns represent a common kind of data
 • They will be operated upon similarly, so that’s easy to do
 • Adding more data of the same type means adding more rows or columns
 • Often spreadsheets contain numbers, but text-only spreadsheets are useful, too
Spreadsheets are not so unusual…

- The position (row/column) names the data, as with memory locations, variables, forms…
- Operating on all elements of a column (or row) is an iteration, though not usually a WFI
- Setting a cell to a formula is an (unevaluated) assignment statement with cells as variables
- The formula is an expression
- Functions are (built-in) functions

Think of spreadsheets as a handier interface for computing ideas than JS
Familiar Terminology

<table>
<thead>
<tr>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MT</td>
<td>HW1</td>
<td>HW2</td>
<td>HW3</td>
<td>HW4</td>
<td>FINAL</td>
<td>HW5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>52</td>
<td>39</td>
<td>105</td>
<td>100</td>
<td>100</td>
<td>90</td>
<td>100</td>
<td>0.935712</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>59</td>
<td>39</td>
<td>110</td>
<td>100</td>
<td>95</td>
<td>87</td>
<td>100</td>
<td>0.943004</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>62</td>
<td>32</td>
<td>110</td>
<td>98</td>
<td>100</td>
<td>86</td>
<td>100</td>
<td>0.944144</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>62</td>
<td>36</td>
<td>110</td>
<td>95</td>
<td>100</td>
<td>88</td>
<td>100</td>
<td>0.953536</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>58</td>
<td>39</td>
<td>110</td>
<td>100</td>
<td>100</td>
<td>92</td>
<td>100</td>
<td>0.96583</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>53</td>
<td>39</td>
<td>108</td>
<td>100</td>
<td>95</td>
<td>88</td>
<td>100</td>
<td>0.927459</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>50</td>
<td>38</td>
<td>110</td>
<td>100</td>
<td>100</td>
<td>89</td>
<td>100</td>
<td>0.927613</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>58</td>
<td>37</td>
<td>105</td>
<td>100</td>
<td>100</td>
<td>87</td>
<td>100</td>
<td>0.933449</td>
<td></td>
</tr>
</tbody>
</table>

- **row name**: row names are located at the top of each column.
- **column name**: column names are located at the left side of each row.
- **cell**: specific values are entered into cells.
- **formula**: mathematical expressions are used to calculate values.
- **referenced cell L2**: cell L2 is referenced in the formula to calculate the value in cell L2.
The data in a spreadsheet can be manipulated using formulas.

The value in H2 (selected cell) is the value in F2 times 0.621 … the result is shown, but the cell has the formula =F2*0.621.
Apply Formula Again

One way to repeat the formula is to copy-and-paste
Filling Replicates Formulas

Fill is a spreadsheet shortcut for copy-and-paste

* Grab the fill tab with the cursor and pull in the direction to be pasted

It's Magic!
Reference to cells happens in 2 ways:
Relative and Absolute (with $)

* F2 relative column, relative row
* F$2 relative column, absolute row
* $F2 absolute column, relative row
* F2 absolute column, absolute row

Relative references change when pasted/filled; absolute references do not change

Your intent determines which to pick
A Powerful Translation

The graphic shows the equations in the cells with the translation: The row changes going down, but the column doesn’t.
A Example

Creating a discount table is case of using both relative and absolute refs

* Consider store credit of $1 per $10 spent
* $3 store credit for every 2 CDs (1 earns $1)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10.00</td>
<td>$2.00</td>
<td>$4.00</td>
<td>$5.00</td>
<td>$7.00</td>
<td>$8.00</td>
<td>$10.00</td>
<td>$11.00</td>
<td>$13.00</td>
</tr>
<tr>
<td>$20.00</td>
<td>$3.00</td>
<td>$5.00</td>
<td>$6.00</td>
<td>$8.00</td>
<td>$9.00</td>
<td>$11.00</td>
<td>$12.00</td>
<td>$14.00</td>
</tr>
<tr>
<td>$30.00</td>
<td>$4.00</td>
<td>$6.00</td>
<td>$7.00</td>
<td>$9.00</td>
<td>$10.00</td>
<td>$12.00</td>
<td>$13.00</td>
<td>$15.00</td>
</tr>
<tr>
<td>$40.00</td>
<td>$5.00</td>
<td>$7.00</td>
<td>$8.00</td>
<td>$10.00</td>
<td>$11.00</td>
<td>$13.00</td>
<td>$14.00</td>
<td>$16.00</td>
</tr>
<tr>
<td>$50.00</td>
<td>$6.00</td>
<td>$8.00</td>
<td>$9.00</td>
<td>$11.00</td>
<td>$12.00</td>
<td>$14.00</td>
<td>$15.00</td>
<td>$17.00</td>
</tr>
<tr>
<td>$60.00</td>
<td>$7.00</td>
<td>$9.00</td>
<td>$10.00</td>
<td>$12.00</td>
<td>$13.00</td>
<td>$15.00</td>
<td>$16.00</td>
<td>$18.00</td>
</tr>
</tbody>
</table>

A cell is based on first column, top row data in that row and column … must mix relative and absolute references
Another handy property of fill is that it can make a series based on constants:

* Fill Sunday => Monday, Tuesday, Wed...
* Fill 22 Feb => 23 Feb, 24 Feb, 25 Feb, ...

More generally:

* Series fill will even count using a constant
* Counting by odd sizes: give 1st two items