Crackers and cookies are:
A. Bytes to share with friends.
B. The best minor league baseball team of all time and their cheerleaders.
C. Hackers who attempt to break a program (crackers) and data stored on your computer by a Web server (cookies).

Announcements
• Friday is our last lecture
• No final next week
• No quiz this week
• Deadline: before 10pm On Tuesday, December 11
 • Labs 13 and 14
 • Extra Credit Labs: 10, 12, 15, and 16
 • Extra Credit Papers
 • Project 3

Privacy
• ACLU: Pizza Palace
 * http://aclu.org/pizza/images/screen.swf

Database
• Primary Keys and Unique IDs
Encryption encodes information to hide it from everyone else ... maintaining your privacy

To keep information private it must be hidden from "prying" computers.

As children, most of us used "secret" codes. Most often the code was a Caesar Cipher -- an alphabetic shift by a constant amount.

Coded Text: IJKLMNOPQRSTUVWXYZABCDEFGH
Clear Text: ABCDEFGHIJKLMNOPQRSTUVWXYZ

VW EIZ QV QZIY

Breaking Caesar Cipher

Fixed substitutions don't work, 'cause letters have a known distribution:
- In a large text, count the frequency of each letter, match the results to distribution.
- The twelve most frequent letters account for 80% of English text.
- ETAOINSHRDLU

Breaking Caesar Cipher

A*ERI*A THE *EAUTI*UL

Encryption Issue

Traditionally, encryption technology has been "breakable" with effort:
- Breakable codes let law enforcement and governments watch criminals and spies.
- Codes are good enough for the honest.
Encryption Issue

Traditionally, encryption technology has been “breakable” with effort:
- Breakable codes let law enforcement and governments watch criminals and spies.
- Codes are good enough for the honest.
- It’s called “strong encryption”... should it be legal to be able to keep secrets absolutely?

Strong encryption: serious issue of public interest.

General Encryption Setup

Encryption is most important for when sending information:

\[
\begin{align*}
\text{Sender} & \quad \text{Encrypt w/K} \quad \text{Cipher Text E(K)(T)} \quad \text{Receiver} \quad \text{Decrypt w/K} \quad \text{Clear Text D(K)(T)} = T
\end{align*}
\]

Problem: Key Exchange

To communicate securely, users must meet before sending/receiving:

\[
\begin{align*}
\text{Sender} & \quad \text{Encrypt w/K} \quad \text{Cipher Text E(K)(T)} \quad \text{Receiver} \quad \text{Decrypt w/K} \\
\text{Clear Text T} & \quad \text{Clear Text D(K)(E(K)(T)) = T}
\end{align*}
\]

This doesn’t work for eCommerce.

Revise Encryption Setup

Public Key Encryption is based on publishing the key:

\[
\begin{align*}
\text{Sender} & \quad \text{Encrypt w/K} \quad \text{Cipher Text E(K)(T)} \quad \text{Receiver} \quad \text{Decrypt w/K} \\
\text{Clear Text T} & \quad \text{Clear Text D(K)(E(K)(T)) = T}
\end{align*}
\]

Public Key Cryptography

Does PKC work? Can’t it be cracked?

- Recall definition of divide: \(a = b \cdot c + d\)
- For example, 50/6 implies 50 = 6 \cdot 8 + 2
- The encryption process is a division:
- \(T = E(K)(c \cdot d)\)
- So sending \(c\) & \(d\) determines clear text \(T\)

But we only send \(d\)!
RSA Encryption

Rivest, Adelman and Shamir invented a PKC scheme called RSA

- The secret is to pick the key, \(K_r \), right.
- Pick two prime numbers -- numbers divisible only by themselves and 1 -- that are 2 greater than a multiple of 3 ... weird!
- Examples are 5, 11, 17, 23, 29, ...
- \(K_r = pq \) so that it is 129 digits

Follow procedure given, send remainder.

How To Recover Message

Compute \(s = \frac{1}{3}(2(p-1)(q-1)+1) \) then compute \(C^s = K_r c + T \)

* That is ...
 - The remainders \(C \) raised to \(s \) power equal \(K_r \) times some (quotient) \(c \) no one cares about plus the original clear text number!
 - So, raise the remainders to \(s \), divide by \(K_r \) and PRESTO! the new remainder is the answer

For \(p=17 \) and \(q=23 \), \(pq=391 \) and \(s=235 \)

What Makes RSA Work?

Though the numbers get huge, computer can handle them quickly

- These codes are strong because breaking them needs \(s \), which needs \(p, q \), which means factoring \(K_r \)
- Factoring is computationally tough -- best methods are only somewhat better than grammar school, "try all small primes"
- Picking 129 digit key, means no computer can factor it ... so the code is unbreakable

RSA Challenge

After inventing their scheme (1977), RSA challenged people to break it

- Their first key was broken in 1994 using 1000 computers over 8 months
- Their secret message: THE MAGIC WORDS ARE SQUEAMISH OSSIFRAGE

Doomed? No. There are many other 129 digit keys, or if people get nervous make 200 digit keys or more ... breaking gets harder very fast; encrypt/decrypt doesn't

Is Strong Encryption Smart

Should we allow people to use strong encryption? Or should only breakable codes be legal?

- It hampers law enforcement and security
- Most criminals reveal plans in other ways
- PKC exists and is known, so build in escape -- Trap door -- Key Escrow
- But are these schemes really secure?