Programming

• Why is programming fun?
 • Fourth is the joy of always learning, which springs from the non-repeating nature of the task. In one way or another the problem is ever new, and its solver learns something: sometimes practical, sometimes theoretical, and sometimes both.

Quiz Review

• Review QuickStart chapters 3 and 4
• Topics
 • Document Object Model
 • Buttons
 • Text boxes and text areas
 • Radio buttons
 • Checkboxes
 • Window object
 • Opening new windows
 • Tables
 • Arrays

Problem Solving

Large problems share many properties:
• They are daunting -- there’s so much to do!
• We don’t know where to begin
• Not sure we know all of the tasks that must be done to produce a solution
• Not sure we know how to do all of the parts -- new knowledge may be required
• Not sure it is within our capability -- maybe an expert is needed

Assume you will succeed; not trying concedes defeat

More Specifics

We will step through the process, using Project 2 as an example:
• Problem decomposition is mostly common sense
• Process is not algorithmic
• Problem decomposition is to help you, so apply it as needed

Whole Picture

Solving large problems is tough -- but approach them logically and you will succeed

© 2004 Lawrence Snyder

Problem Decomposition

“Divide and conquer” is a political strategy, military strategy, & IT strategy

Top-level Plan--(Project 2A.2)
1. Describe (in any language) a series of steps that produce a solution
2. For each step, solve it or decompose further
3. For steps needing decomposition, repeat 2
4. Assemble solutions and test correctness
5. When solution fully assembled, evaluate
1. Give Steps to a Solution

Specify (in any language) a series of steps that produce a solution

• For a huge problem the steps may at first be vague, but they can be (must be) made more precise as the whole picture emerges
• The goal is an algorithm(s), so...
• List & describe the inputs
• List & describe the outputs
• Be guided in figuring out the steps by the need to transform the inputs into the outputs
 - Correct answers, student’s choices, total score

What Are Steps for Quiz?

Enter your first name:

1. What is the Seattle Football team?
2. Where do they play?
3. How many games a year do they play?
4. How many players are on the team?

Steps

• Student as Teacher—Creating an Online Quiz (150 points)
 • 2A: Creating the GUI in HTML (25 points)
 • 2B: Scoring the Quiz (125 points)

Project 2A

• 2A.1 Creating the GUI
 • Write questions and answers
 - Choose a subject you know well
 • Create the GUI in HTML
 - Eight fill-in-the-blank questions
 - Add mouseover effects (rollover) to an image
 • 2A.2
 - Write a planning document
 - Plan your coding strategy
 - Write in narrative form what your coding will do for the entire project

Project 2B

• Part 2B: Scoring the Quiz
 • Score eight fill-in-the-blanks from 2A
 • Write and score two multiple-choice questions
 - One with one answer
 - One with several answers
 • Score the quiz with JavaScript
 • Print the total score to the page
 • Depending on score, a new page opens (Study more! or Good work!)
 • Write a reflection paper on the project

What Are Steps for Quiz?

Project 2A

• Build basic GUI
 - With 8 textboxes for each answer
 - Add questions to each textbox
 - Add a submit button
 - Add an image with a rollover (mouseover event)
 - Add any instructions needed by the user
 - Primp design & make cool looking
• Write planning document
 - Decompose the coding for Project 2B
 - Write a narrative explaining your coding strategy
Steps for Quiz

- Part 2B: Scoring the Quiz
 - Create an array of correct answers
 - Create a variable to hold the student's score
 - Write a function to compare the student's answer with the correct answer.
 - Create multiple-choice questions
 - Radio buttons for one answer
 - Checkboxes for several answers
 - Create 2 HTML pages:
 - Study More!
 - Good Work!

2&3. Solve or Decompose

For each step, solve it or decompose it further, i.e. apply same technique
- Most “top level” steps can’t be brained out, and need further decomposition
- “Top level” steps often seem huge, too
- The technique allows one to concentrate on only one problem at a time
- As before, focus on inputs, outputs, process to transform inputs into outputs

Inputs & Outputs

- Inputs
 - Array of quiz answers
 - User input from form
 - Click event on submit button
 - Mouseover on rollover image

- Outputs
 - Final score
 - Comment pages
 - Good job!
 - Study More!
 - Change bgcolor based on score

2&3. Solve or Decompose

“Code compare functions”
- Build onSubmit event handler
- Access student answers from form inputs
 - Compare correct answers in array with student answers from form

4. Assemble Parts

Assemble Solutions & Test Correctness

- Putting solutions together can be tough because of different assumptions made while solving the parts -- it always happens
- When working alone it is common to combine parts along the way and to test continuously
- Because of the need to test, pick a good order to solve the problems

Getting something working quickly is best.
4. Assemble Parts

Project 2 solves & assembles parts together in a ‘good’ order

1. What is the Seattle Football team?
2. What position is a player on offense?
 - A. Quarterback
 - B. Wing
 - C. Center
 - D. Tackle
3. How many games a year do they play?

Notice adding steps to test a solution may be wise.

Parts mismatch is common problem, but not in Project 2.

Summary

Large problems can be solved by the ‘divide and conquer’ technique

- The process is “top down” – get a top level solution even if it is vague, imprecise
- Whenever you cannot produce a solution to a step directly, reapply the technique
- The start and first several steps will be daunting … but the process works!
- Get part of solution working quickly if possible