
11/4/2007

1

FIT100FIT100FIT100
Programming

• Why is programming fun?
• Fourth is the joy of always learning,

which springs from the non-repeating p g p g
nature of the task. In one way or
another the problem is ever new, and
its solver learns something: sometimes
practical, sometimes theoretical, and
sometimes both.

Source: Frederick P. Brooks, Jr. The Mythical Man-Month:
Essays on Software Engineering.

FIT100FIT100FIT100
Quiz Review

• Review QuickStart chapters 3 and 4

• Topics
∗ Document Object

Model
∗ Buttons
∗ Text boxes and text

areas
∗ Radio buttons
∗ Checkboxes

∗ Window object
∗ Opening new

windows
∗ Tables
∗ Arrays

FIT100FIT100FIT100

Whole Picture

Solving large problems is tough
-- but approach them logically

and you will succeed

© 2004 Lawrence Snyder

FIT100FIT100FIT100
Problem Solving

Large problems share many properties:
• They are daunting -- there’s so much to do!
• We don’t know where to begin
• Not sure we know all of the tasks that must be

done to produce a solution
• Not sure we know how to do all of the parts --

new knowledge may be required
• Not sure it is within our capability -- maybe an

expert is needed

Assume you will succeed; not trying concedes defeat

FIT100FIT100FIT100
Problem Decomposition

“Divide and conquer” is a political
strategy, military strategy, & IT
strategygy

Top-level Plan--(Project 2A.2)
1. Describe (in any language) a series of steps

that produce a solution
2. For each step, solve it or decompose further
3. For steps needing decomposition, repeat 2
4. Assemble solutions and test correctness
5. When solution fully assembled, evaluate

FIT100FIT100FIT100
More Specifics

We will step through the process, using
Project 2 as an example:

• Problem decomposition isp
mostly common sense

• Process is not algorithmic
• Problem decomposition is

to help you, so apply it as
needed

11/4/2007

2

FIT100FIT100FIT100
1. Give Steps to a Solution

Specify (in any language) a series of
steps that produce a solution

• For a huge problem the steps may at first be g p p y
vague, but they can be (& must be) made
more precise as the whole picture emerges

• The goal is an algorithm(s), so …
• List & describe the inputs
• List & describe the outputs
• Be guided in figuring out the steps by the

need to transform the inputs into the outputs
– Correct answers, student’s choices, total score

You will be
naming things

FIT100FIT100FIT100
What Are Steps for Quiz?

FIT100FIT100FIT100
Steps

• Student as Teacher—Creating
an Online Quiz (150 points)
∗ 2A: Creating the GUI in HTML (25 points)∗ 2A: Creating the GUI in HTML (25 points)
∗ 2B: Scoring the Quiz (125 points)

FIT100FIT100FIT100
Project 2A

• 2A.1 Creating the GUI
• Write questions and answers

• Choose a subject you know well

i• Create the GUI in HTML
• Eight fill-in-the-blank questions
• Add mouseover effects (rollover) to an image

• 2A.2
• Write a planning document

• Plan your coding strategy
• Write in narrative form what your coding will do for

the entire project

FIT100FIT100FIT100
Project 2B

• Part 2B: Scoring the Quiz
∗ Score eight fill-in-the-blanks from 2A
∗ Write and score two multiple-choice questions

• One with one answer
• One with several answers

∗ Score the quiz with JavaScript
∗ Print the total score to the page
∗ Depending on score, a new page opens

(Study more! or Good work!)
∗ Write a reflection paper on the project

FIT100FIT100FIT100
What Are Steps for Quiz?

Project 2A
• Build basic GUI

– With 8 textboxes for each answer
– Add questions to each textboxAdd questions to each textbox
– Add a submit button
– Add an image with a rollover (mouseover

event)
– Add any instructions needed by the user
– Primp design & make cool looking

• Write planning document
– Decompose the coding for Project 2B
– Write a narrative explaining your coding

strategy

11/4/2007

3

FIT100FIT100FIT100
Steps for Quiz

• Part 2B: Scoring the Quiz
∗ Create an array of correct answers
∗ Create a variable to hold the student’s score
∗ Write a function to compare the student’s

answer with the correct answer.
∗ Create multiple-choice questions

• Radio buttons for one answer
• Checkboxes for several answers

∗ Create 2 HTML pages:
• Study More!
• Good Work!

FIT100FIT100FIT100
PERT

PERT is Program Evaluation & Review
Technique … developed in 1950s

• Diagrams show the dependencies visuallyg p y

Build GUI

Code
Compare
Functions

Write 2
Comment

pages

Declare
Score

Variable

Code
Display
Score

Primp &
Coolify

Build
Rollover

Code
Display

Comment

FIT100FIT100FIT100
2&3. Solve or Decompose

For each step, solve it or decompose
it further, i.e. apply same technique

• Most “top level” steps can’t be brained out, p p
and need further decomposition

• “Top level” steps often seem huge, too
• The technique allows one to concentrate

on only one problem at a time
• As before, focus on inputs, outputs, process

to transform inputs into outputs

Often, “last” decomposition done during solution

FIT100FIT100FIT100
Inputs & Outputs

• Inputs
∗ Array of quiz

answers
U i t f

• Outputs
∗ Final score
∗ Comment pages

∗ User input from
form

∗ Click event on
submit button

∗ Mouseover on
rollover image

• Good job!
• Study More!

∗ Change bgcolor
based on score

FIT100FIT100FIT100
2&3. Solve or Decompose

“Code compare functions”
∗ Build onSubmit event handler
∗ Access student answers from form Access student answers from form

inputs
∗ Compare correct answers in array with

student answers from form
Need to learn about
• accessing elements in array
• accessing student answers from
form inputs

FIT100FIT100FIT100
4. Assemble Parts

Assemble Solutions &Test Correctness
• Putting solutions together can be tough

because of different assumptions made
hil l i th t it l hwhile solving the parts -- it always happens

• When working alone it is common to
combine parts along the way and to test
continuously

• Because of the need to test, pick a good
order to solve the problems

Getting something working quickly is best

11/4/2007

4

FIT100FIT100FIT100
4. Assemble Parts

Project 2 solves & assembles parts
together in a ‘good’ order

11 2

3

FIT100FIT100FIT100
4. Assemble Parts

Project 2 solves & assembles parts
together in a ‘good’ order

• Most parts of Project 2 usep j
the developing solution
for testing -- that’s ‘good’

• Notice adding steps to
test a solution may be wise

• Parts mismatch is common
problem, but not in Project 2

FIT100FIT100FIT100
Summary

Large problems can be solved by the
‘divide and conquer’ technique

• The process is “top down” -- get a top level p p g p
solution even if it is vague, imprecise

• Whenever you cannot produce a solution
to a step directly, reapply the technique

• The start and first several steps will be
daunting … but the process works!

• Get part of solution working quickly if
possible

