Encryption encodes information to hide it from everyone else … maintaining your privacy
Security Basics

Security Worries --

* Reading info as it's being transmitted
* Mischief on computer: erasing files, etc.
* Gather key info to impersonate you
* Others have your info, they can misuse it or “provide it” to unqualified persons

Security is a serious problem, and only you can prevent the loss of your info
What Can Happen?

Viruses & worms are common ways for malicious software to enter computer

* Virus--malicious SW riding in on other SW
* Worm--SW purposely transmitting itself

Worms usually travel by attachments to email: .exe, .zip, .dmg, ...

* Open attachments only if you know the sender and trust him/her
Stealing your information is easiest if people give it up voluntarily

* Goal: SSN, Bank Acct. #, Security Info for purposes of identity theft
* Technique: Send SPAM that looks like legit mail from bank, credit union, govt. ... claiming it must verify your information
* The whole thing is a spoof trying to get you to give up private information
Spyware

Spyware is software designed to set up shop on your computer to steal information or computer services

- Spyware most often rides along with downloads; be wary of
 - Music and video downloads
 - Software downloads
Major Protection

You must run virus protection software to keep your computer safe

* It’s easy to install and worth the $$
* Keep it current
* Don’t open attachments

Other concerns

* Disable 3rd party cookies
* Don’t answer phishing scams
* Get music & SW from reputable source
Maintaining Privacy

To keep information private it must be hidden from “prying” computers

As children, most of us used “secret” codes
Most often the code was a Caesar Cipher -- an alphabetic shift by a constant amount

Clear Text: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Encode ↓ Decode ↑
Coded Text: IJKLMNOPQRSTUVWXYZABCDEF

LW VWB AXG WV CAI
Breaking Caesar Cipher

Fixed substitutions don’t work, ‘cause letters have a known distribution

- In a large text, count the frequency of each letter, match the results to distribution
- The twelve most frequent letters account for 80% of English text
- ETAOINSHRDLU

A*ERI*A THE *EAUTI*UL
Encryption Issue

Traditionally, encryption technology has been “breakable” with effort

- Breakable codes let law enforcement and governments watch criminals and spies
- Codes are good enough for the honest
Traditionally, encryption technology has been “breakable” with effort

- Breakable codes let law enforcement and governments watch criminals and spies
- Codes are good enough for the honest

⇒ New computer encryption is unbreakable⇐

- It’s called “strong encryption” ... should it be legal to be able to keep secrets absolutely?

Strong encryption: serious issue of public interest
Encryption is most important for when sending information.

General Encryption Setup

Sender
Encrypt w/K_{sr}

Cipher Text E_{sr}(T)

Receiver
Decrypt w/K_{sr}

Clear Text T

Clear Text D_{sr}(E_{sr}(T)) = T

K_{sr}

K_{sr}
Problem: Key Exchange

To communicate securely, users must meet before sending/receiving

\[K_{sr} \]

Sender
Encrypt w/\(K_{sr} \)

\[\text{Clear Text } T \]

\[E_{sr}(T) \]

Cipher Text

\[K_{sr} \]

Receiver
Decrypt w/\(K_{sr} \)

\[\text{Clear Text } D_{sr}(E_{sr}(T)) = T \]

This doesn’t work for eCommerce
Revise Encryption Setup

Public Key Encryption is based on publishing the key

Sender uses public key to encrypt

\[
\text{Sender Encrypt w/K}_r
\rightarrow \text{Cipher Text } E_r(T) \rightarrow \text{Receiver Decrypt w/K}_r
\]

Clear Text \(T \) \(\rightarrow \) Clear Text \(T = D_r(E_r(T)) \)

\(K_{sr} \)
Rivest, Adelman and Shamir invented a PKC scheme called RSA

- The secret is to pick the key, K_r, right
- Pick two prime numbers -- numbers divisible only by themselves and 1 -- that are 2 greater than a multiple of 3 … weird!
- Examples are 5, 11, 17, 23, 29, ...
- $K_r = p \cdot q$ so that it is 129 digits

Follow procedure given, send remainders
What Makes RSA Work?

Though the numbers get huge, computer can handle them quickly

- These codes are strong because breaking them needs s, which needs p, q, which means factoring K_r
- Factoring is computationally tough -- best methods are only somewhat better than grammar school, “try all small primes”
- Picking 129 digit key, means no computer can factor it … so the code is unbreakable
After inventing their scheme (1977), RSA challenged people to break it

- Their first key was broken in 1994 using 1000 computers over 8 months
- Their secret message: THE MAGIC WORDS ARE SQUEAMISH OSSIFRAGE

Doomed? No. There are many other 129 digit keys, or if people get nervous make 200 digit keys or more … breaking gets harder very fast; encrypt/decrypt doesn’t
Is Strong Encryption Smart

Should we allow people to use strong encryption? Or should only breakable codes be legal?

• It hampers law enforcement and security
• Most criminals reveal plans in other ways
• PKC exists and is known, so build in escape
 -- Trap door
 -- Key Escrow
• But are these schemes really secure?