

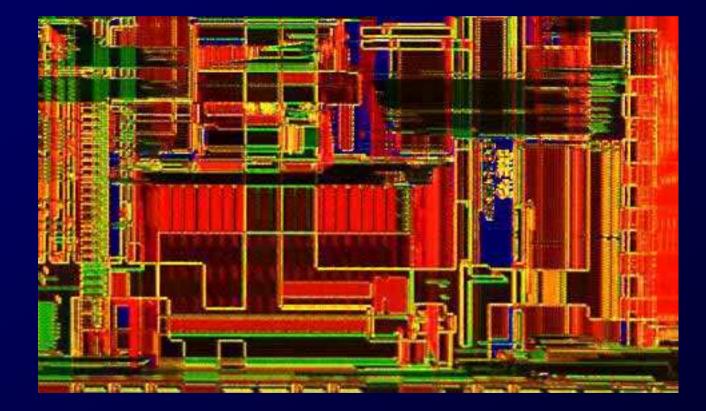
Announcements

Project 2B turn-in Wednesday 11:00PM Midterm 2 on Friday Only on material since last midterm

Computer Basics

How exactly does a computer work?

© Lawrence Snyder, 2006


Integrated Circuits

Integrated circuits (ICs) are the power source of the information revolution

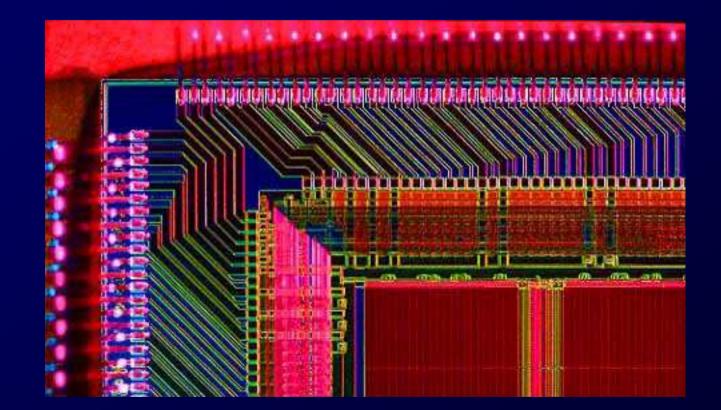
- When computers were made of discrete parts, wires of every transistor (3), capacitor (2), resistor (2), etc. had to be hand-connected
- Labor intensive, expensive, error prone, unreliable, cumbersome, ... even with robots!
- Integrated circuits solved that by 2 ideas Integration -- circuits built as a unit from like parts Photolithography -- printing process to make chips

Intel Pentium Processor

Photolithography

Consider process for depositing wires **Ultraviolet Light** Mask **Photoresist** Aluminum Silicon

Remove Resist



The cost of the circuit is not related to complexity

R4400 NEC/MIPS Processor

7

Semiconductors

Silicon, a semiconductor -- sometimes it conducts and sometimes it doesn't • It's possible to control when semiconductors do and don't conduct

Compute by controlling conducting

Ex.: Use control to test (Mars AND rover)

Make semiconductor conduct if "Mars" is found

Make semiconductor conduct if "rover" is found

Send "yes" signal on wire

Detect presence/absence of "yes" 8

Field Effect

Charged objects are familiar -- use a nylon comb on a dry day

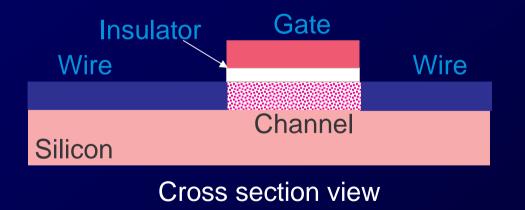
Gate

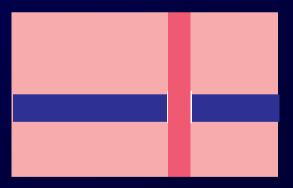
 A charged field can control whether a semiconductor conducts or not

> A transistor has 3 wires

Channel The charge of the control wire (gate) is key Neutral gate, channel doesn't conduct Charged gate, channel conducts

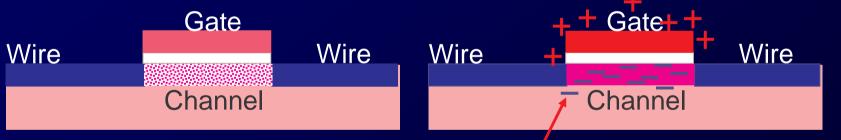
MIPS R10000 Processor


Notice that wires cross over other wires ...


10

MOS Transistors

The field effect idea is implemented in metal-oxide-semiconductor transistors



View from above

Operation

The two cases: the gate is neutral or the gate is charged

Charged gate attracts electrons to channel

Notice key points of integrated circuits: Constructed as a unit of compatible parts Fabricated in layers by photolithography

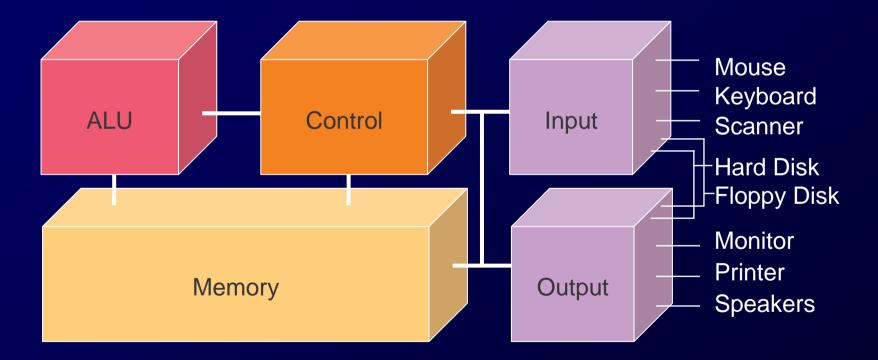
Computers ...

Deterministically execute instructions to process information

"Deterministically" means that when a computer chooses the next instruction to perform it is required by its construction to execute a specific instruction based only on the program and input it is given

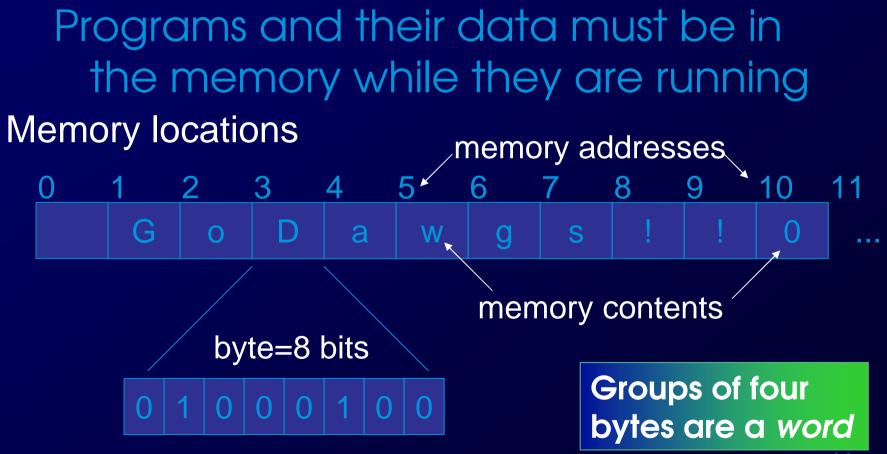
> Computers have no free will and they are not cruel

Fetch/Execute Cycle


Computer = instruction execution engine

The fetch/execute cycle is the process that executes instructions

Instruction Fetch (IF) Instruction Decode (ID) Data Fetch (DF) Instruction Execution (EX) Result Return (RR)


Anatomy of a Computer

The Hard Disk is the α -device

Memory ...

Control

The Fetch/Execute cycle is hardwired into the computer's control, i.e. it is the actual "engine"

The instructions executed have the form ADDB 20, 10, 16

10	11	12	13	14	15	16	17	18	19	20	21
6						12				18	

Put in memory location 20 the contents of memory location 10 + contents of memory location 16

Indirect Data Reference

Instructions tell *where* the data is, not *what* the data is ... contents change

> One instruction has many effects ADDB 20, 10, 16

8 7	15	
<u>10 11 12 13 14 15 16 17 18</u>	9 20	21
60 -55	5	

18

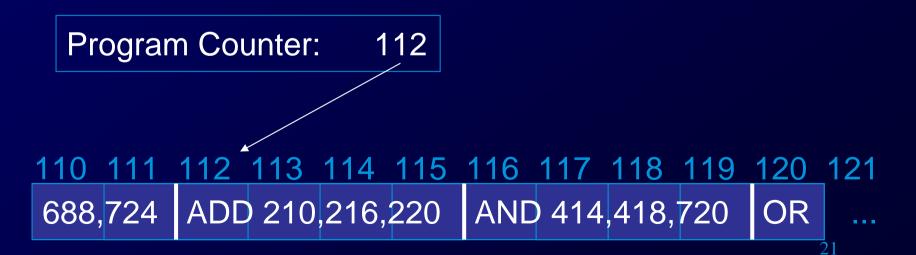
The Arithmetic/Logic Unit does the actual computation

Each type of data has its own separate instructions						
ADDB	: add bytes	ADDBU	: add bytes unsigned			
ADDH	: add half words	ADDHU	: add halves unsigned			
ADD	: add words	ADDU	: add words unsigned			
ADDS	: add short decimal numbers					
ADDD	: add long decimal numbers					

Most computers have only about a 100-150 instructions hard wired

Input/Output

Input units bring data to memory from outside world; output units send data to outside world from memory


- Most peripheral devices are "dumb" meaning that the processor assists in their operation
- Disks are *memory* devices because they can output information and input it back again

The PC's PC

The program counter (PC) tells where the next instruction comes from

Instructions are a word long, so add 4 to the PC to find the next instruction

Clocks Run The Engine

The rate a computer "spins around" the Fetch/Execute cycle is controlled by it's clock

- Current clocks run 2-3 GHz
- In principle, the computer should do one instruction per cycle, but often it fails to
- Modern processors try to do more than one instruction per cycle, and often succeed

Clock rate is not a good indicator of speed

Summary

Semiconductors make Info Revolution * Semiconductors properties ... Fields controls when semiconductor conducts On/off of conductors allows us to compute Fetch/execute cycle runs instructions * 5 steps to interpret machine instructions * Programs must be in the memory * Data is moved in and out of memory Instructions, data are represented in binary 23