

Algorithms

Algorithms are a familiar idea. Our goal is to learn to specify them right so someone or something else does the work

Previous Algorithms

Algorithm, a precise, systematic method to produce a specified result • We have seen algorithms already... • Placeholder technique is an algorithm with an easy specification: $longStringWithShortStringInIt \leftarrow placeholder$ $ShortString \leftarrow \varepsilon$ $placeholder \leftarrow longStringWithShortStringInIt$

Not every process is an algorithm -- debugging

Properties of Algorithms

For an algorithm to be well specified it must have ...

- Inputs specified
- Outputs specified
- Definiteness
- Effectiveness
- Finiteness

Programs vs Algorithms

A program is an algorithm specialized to a particular situation * Algorithm: ShortString $\leftarrow \varepsilon$ * Program: $\downarrow \downarrow \leftarrow \#$ $\dashv \leftarrow \mathcal{E}$ $\# \leftarrow \downarrow \downarrow$

Alphabetize CDs

 Def Artist_of Use Artist_of to refer to the group name
Pick Alpha Decide which end of rack is to be start of alphabetic sequence, and call the first slot alpha

Spoon Beethoven Hampton Wynette Pearl Jam

3. Pick Beta Call the slot next to alpha, beta

- 4. Exchange If Artist_of the CD in the alpha slot is later in the alphabet than the Artist_of the CD in the beta slot, interchange the CDs, otherwise continue on
- 5. More Betas? If a slot follows *beta* slot, begin calling it the *beta* slot and go to step 4, otherwise continue on
- 6. More Alphas? If two slots follow the *alpha* slot, begin calling the next one the *alpha* slot and the one following it the *beta* slot; go to step 4; otherwise stop

Demonstration

Abstraction

Abstraction means removing an idea or process form a situation

Beta sweep -- while alpha points to a fixed slot, beta sweeps through slots following alpha, interchanging as necessary

←Beta Sweep

The beta sweep is a concept removed based on our understanding of the operation of the algorithm

The Beta Sweep

By abstracting we can analyze parts of an algorithm ...

* The beta sweep has 4 properties:

- Exhaustive -- it considers all CDs after alpha
- Non-redundant -- no slot pair is checked twice
- *Progressive* -- the alphabetically earliest CD considered so far is always in the *alpha* slot
- Effective -- at completion, the alphabetically earliest CD from *alpha* to end is in *alpha* slot

These properties apply only to Alphabetize CDs 10

Alpha Sweep

The alpha sweep...

Process of sweeping through all of the CDs (but the last) performing the beta sweep

- Exhausitve -- considers all but last CD
- Non-redundant -- a slot is alpha only once
- Progressive -- when beta sweep completes the alphabetically next CD in alpha
- Complete -- when last beta sweep is done the last slot's CD is later than next to last slot
- *Effective* -- the *alpha* sweep alphabetizes

Summary

We figure out most algorithms on our own, abstracting from specific cases Also we abstract parts of an algorithm or program to understand them * Thinking of how the program works and reasoning about its properties allows us

to know *why* an algorithm works ... and then we can let the computer do it