

More Digital Representation

Discrete information is represented in binary (PandA), and "continuous" information is made discrete

Return To RGB

Images are constructed from picture elements (pixels); color uses RGB light The RGB color intensities are specified by 3 numbers in the range (0, 255), ie 1 byte each Black = (0, 0, 0) Gray = (128,128,128) White = (255,255,255)

White-gray-black all have same values for RGB

Colors

Colors use different combinations of

• Husky Purple
 Red=160
 Green=76
 Blue=230

Colors	<u>? ×</u>
Standard Custom Colors:	OK Cancel <u>P</u> review
Hue: 193 🛖 Red: 160 🛖	New
Sat: 193 🛖 Green: 76 🌲	
Lum: 153 🚔 Blue: 230 🚔	
Semitransparent	Current

Positional Notation

The RGB intensities are binary numbers Binary numbers, like decimal numbers, use place notation $1101 = 1 \times 1000 + 1 \times 100 + 0 \times 10 + 1 \times 1$ $= 1 \times 10^{3} + 1 \times 10^{2} + 0 \times 10^{1} + 1 \times 10^{0}$ **Base or** except that the base is 2 not 10 radix 1101 = 1x8 + 1x4 + 0x2 + 1x1 $= 1x2^{3} + 1x2^{2} + 0x2^{1} + 1x2^{0}$

1101 in binary is 13 in decimal

Binary Numbers

Given a binary number, add up the powers of 2 corresponding to 1s

	1x2 ⁷	$= 1 \times 128$	= 128
	0x2 ⁶	= 0x64	= 0
	1x2 ⁵	= 1x32	= 32
	0x2 ⁴	= 0x16	= 0
	0x2 ³	= 0x8	= 0
	0x2 ²	= 0x4	= 0
	0x2 ¹	= 0x2	= 0
	0x2 ⁰	= 0x1	= 0
1010 0000			=160

Binary Numbers

Given a binary number, add up the powers of 2 corresponding to 1s

	0x2 ⁷	= 0x128	= 0
	1x2 ⁶	= 1x64	= 64
	0x2 ⁵	= 0x32	= 0
	0x2 ⁴	= 0x16	= 0
	1x2 ³	= 1x8	= 8
	1x2 ²	= 1x4	= 4
	0x2 ¹	= 0x2	= 0
	0x2 ⁰	= 0x1	= 0
0100 1100			=76

Binary Numbers

Given a binary number, add up the powers of 2 corresponding to 1s

1x2 ⁷	= 1x128	= 128
1x2 ⁶	= 1x64	= 64
1x2 ⁵	= 1x32	= 32
0x2 ⁴	= 0x16	= 0
0x2 ³	= 0x8	= 0
1x2 ²	= 1x4	= 4
1x2 ¹	= 1x2	= 2
$ 0x2^{0}$	= 0x 1	= 0
1110 0110		=230

Husky Purple

Recall that Husky purple is (160,76,230) which in binary is 1010 0000 0100 1100 1110 0110 160 230 76 Suppose you decide it's not "red" enough • Increase the red by 16 = 100001010 0000 Adding in binary is 1 0000 pretty much like 1011 0000 adding in decimal

A Redder Purple

Increase by 16 more

00110 000 ← Carries 1011 0000 + 10000 1100 0000

The rule: When the "place sum" equals the radix or more, subtract radix & carry

Fill in the Table:

Num Being Converted	230	230	102	38	6	6	6	2	0
Place Value	256	128	64	32	16	8	4	2	1
Subtract		102	38	6			2	0	
Binary Num	0	1	1	1	0	0]	1	0

Place number to be converted into the table; fill place value row with decimal powers of 2

Num Being Converted	230								
Place Value	256	128	64	32	16	8	4	2	1
Subtract									
Binary Num									

Num Being Converted	230-	▶230							
Place Value	256	128	64	32	16	8	4	2]
Subtract									
Binary Num	0								

Num Being Converted	230-	→ 230	102						
Place Value	256	128	64	32	16	8	4	2	1
Subtract		102							
Binary Num	0	1							

Num Being Converted	230-	▶230	102	38					
Place Value	256	128	64	32	16	8	4	2	1
Subtract		102	38						
Binary Num	0	1	1						

Num Being Converted	230-	→ 230	102	38	6				
Place Value	256	128	64	32	16	8	4	2	1
Subtract		102	38	6					
Binary Num	0	1	1	1					

Num Being Converted	230-	→ 230	102	38	6	→6			
Place Value	256	128	64	32	16	8	4	2	1
Subtract		102	38	6					
Binary Num	0	1	1	1	0				

Num Being Converted	230-	▶230	102	38	6	•6	• 6		
Place Value	256	128	64	32	16	8	4	2	1
Subtract		102	38	6					
Binary Num	0	1	1	1	0	0			

Num Being Converted	230-	▶230	102	38	6	→ 6-	• 6	2	
Place Value	256	128	64	32	16	8	4	2	1
Subtract		102	38	6			2		
Binary Num	0	1	1	1	0	0	1		

Num Being Converted	230-	→ 230	102	38	6	-6	• 6	2	0
Place Value	256	128	64	32	16	8	4	2	1
Subtract		102	38	6			2	0	
Binary Num	0	1	1]	0	0]	1	

Rule: Subtract PV from the number; a positive result gives new number and "1"; otherwise, "0"

Num Being Converted	230-	▶230	102	38	6	-6	• 6	2	0
Place Value	256	128	64	32	16	8	4	2	1
Subtract		102	38	6			2	0	
Binary Num	0	1	1	1	0	0]	1	0

Read off the result: 0 1110 0110

Digitizing

"Continuous" information like light and sound must be made "discrete"

Digital audio uses 44,100 samples per second of 16 bits on two channels, or 10,584,000 B/min

Compression

Compression: use fewer bits

* Lossless –
Recover
the data
* Lossy– Lose
the original
data

Original

Over compressed

Run-Length Compression

Give number of 1s, number of 0s, etc.

(270 1s) (270 1s) (2 1s)(266 0s)(2 1s) (2 1s)(266 0s)(2 1s)

Forget row encoding ... alternate [Size: 270x200](542)(266)(4)(266)(4)(266)(4)(266) ...

Bits Are It

Bits represent information, but their interpretation gives bits meaning 0000 0000 1111 0001 0000 1000 0010 0000 • Could be a number, color, instruction, ASCII, sound samples, IP address, ...

> Bias-free Universal Medium Principle: Bits can represent all discrete information; bits have no inherent meaning

Summary

Bits can represent any information

- Discrete information is directly encoded using binary
- * Continuous information is made discrete
- * Bias-free Universal Medium Principle