Networking

More than just a social interaction
Networks...

Computers are useful alone, but are better when connected (networked)

* Access more information and software than is stored locally
* Help users to communicate, exchange information ... changing ideas about social interaction
* Perform other services -- printing, Web,...

UW’s networks move more than trillion bytes per day
Network Structure

Networks are structured differently based (mostly) on how far apart the computers are:

- **Local area network (LAN)** -- a small area such as a room or building
- **Wide area networks (WAN)** -- large area, e.g. distance is more than 1 Km

Internet: all of the wires, fibers, switches, routers etc. connecting named computers.
Protocol Rules!

To communicate computers need to know how to set-up the info to be sent and interpret the info received

* Communication rules are a *protocol*

* Example protocols
 * EtherNet for physical connection in a LAN
 * TCP/IP -- transmission control protocol / internet protocol -- for Internet
 * HTTP -- hypertext transfer protocol -- for Web
LAN in the Lab

EtherNet is a popular LAN protocol

• Recall, it’s a “party” protocol

Connection to campus network infrastructure

Typical MGH or OUICL Lab

Ether Net Cable
The campus subnetworks interconnect computers of the UW domain which connects to Internet via a gateway.
Information is sent across the Internet using IP -- Cerf uses postcard analogy

- Break message into fixed size units
- Form IP packets with destination address, sequence number and content
- Each makes its way separately to destination, possibly taking different routes
- Reassembled at destination forming msg

Taking separate routes lets packets by-pass congestion and out-of-service switches
A Trip to Switzerland

A packet sent from UW to ETH (Swiss Fed. Tech. University) took 21 hops
Check Internet Hops

Interested?

* Find software using Google: Search on “traceroutes”
* Download a copy of the software
* Install software and type in foreign URLs
 - Switzerland eth.ch
 - Australia www.usyd.edu.au
 - Japan kyoto-u.ac.jp
 - South Africa www.uct.ac.za

Use Google to find foreign computers
People name computers by a domain name -- a hierarchical scheme that groups like computers.

- `.edu` All educational computers
- `.washington.edu` All computers at UW
- `dante.washington.edu` A UW computer
- `.ischool.washington.edu` iSchool computers
- `.cs.washington.edu` CSE computers
- `june.cs.washington.edu` A CSE computer

Domains begin with a “dot” and get “larger” going right.
Computers are named by IP address, four numbers in the range 0-255

- cse.washington.edu: 128.95.1.4
- ischool.washington.edu: 128.208.100.150

* Remembering IP addresses would be brutal for humans, so we use domains
* Computers find the IP address for a domain name from the Domain Name System -- an IP address-book computer

A computer needs to know IP address of DNS server!
Domains

.edu .com .mil .gov .org .net domains are “top level domains” for the US

* Recently, new TLD names added
* Each country has a top level domain name: .ca (Canada), .es (Spain), .de (Germany), .au (Australia), .at (Austria), .us

The FIT book contains the complete list
Logical vs Physical

There are 2 ways to view the Internet

- Humans see a hierarchy of domains relating computers -- logical network
- Computers see groups of four number IP addresses -- physical network
- Both are ideal for the “users” needs

- The Domain Name System (DNS) relates the logical network to the physical network by translating domains to IP addresses
Client/Server Structure

The Internet computers rely on the client/server protocol: servers provide services, clients use them

- Sample servers: email server, web server, ...
- UW servers: dante, courses, www, student,…
- Frequently, a “server” is actually many computers acting as one, e.g. dante is a group of more than 50 servers

Protocol: Client packages a request, and sends it to a server; Server does the service and sends a reply
World Wide Web

World Wide Web is the collection of servers (subset of Internet computers) & the information they give access to

• Clearly, WWW ≠ Internet
• The “server” is the web site computer and the “client” is the surfer’s browser
• Many Web server’s domain names begin with www by tradition, but any name is OK
• Often multiple server names map to the same site: MoMA.org and www.MoMA.org
For Web pages, the client requests a page, the server returns it: there’s no connection, just two transmissions.

Servers serve many clients; clients visit many servers.
Dissecting a URL

Web addresses are URLs, uniform resource locator, an IP address+path

- URLs are often redirected to other places; e.g. http://www.cs.washington.edu/100/ goes to http://www.cs.washington.edu/education/courses/100/04wi/index.htm

<table>
<thead>
<tr>
<th>Protocol</th>
<th>= http://</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web server</td>
<td>= www</td>
</tr>
<tr>
<td>Domain</td>
<td>= .cs.washington.edu</td>
</tr>
<tr>
<td>Path</td>
<td>= /education/courses/100/04wi/ directories (folders)</td>
</tr>
<tr>
<td>File</td>
<td>= index</td>
</tr>
<tr>
<td>File extension</td>
<td>= .htm</td>
</tr>
</tbody>
</table>

hypertext markup language
Networking is changing the world

Internet: named computers using TCP/IP
WWW: servers providing access to info

* Principles
 * Logical network of domain names
 * Physical network of IP addresses
 * Protocols rule: LAN, TCP/IP, http, ...
 * Domain Name System connects the two
 * Client/Server, fleeting relationship on WWW