Thinking of Databases

Databases are organized on two levels: 'physical' is how the data is stored, 'logical' is how it's viewed.

© 2006 Lawrence Snyder

Big Picture

A database is made of...
- Physical database -- tables actually stored on the hard disk
- Logical database -- created on-the-fly virtual tables specified by...
- Queries -- (programs written in SQL that) define how to make a logical table from physical tables
- GUIs -- the interface for users to DBs

Avoiding Redundancy

Redundancy is bad because it can lead to inconsistent data... very bad!
- Keep only one copy of any data ... does that make it right???
- Rather than repeating data, reference it in the places where it is needed
 - Keep data in its own table
 - Save its key wherever it is needed

When users want the data, get it using its key!

Physical Database

Physical databases store data in the "best" way -- no redundancy, ...
- Expect many tables of "simple" entities
- "Physical" means that the data is actually stored on the disk -- contrast with logical DBs that are "virtual tables"
- Physical databases are designed "for the computer" not for the user
- The "physical schema" gives table definitions and the relationships

Relationships

The table data entries are not just text & numbers, but they have meaning
- Relationships spell out that meaning

Faculty

Student

Advisor

Kinds of Relationships

One-to-One
- Faculty
- Parking Permit

One-to-Many
- Dorm
- Student

Many-to-Many
- Student
- Club

Name relationships by their meaning
Logical Databases

Users want & need different information
• Different tasks require different information
• Different authority levels, e.g. need to know
• Customizing to users means everyone sees exactly
 what they need to see
• A view is a user’s customized database
• Views are virtual, built on-the-fly from the
 physical database and not kept
• Data is always current
• Custom structure can be very adaptable

Queries

Queries are commands (using the 5
table operations) that create logical
database (views) from physical

SQL

The structured query language is the
industry standard query language
“Structured” means the queries have a
standard form
Common clauses --
SELECT <fields desired>
FROM <list of tables>
INNER JOIN <table> ON <conditions>
WHERE <criterion>

Sample Database

Define a university DB schema
• ER Diagram
• Specifying a 1-to-many relationship

Sample SQL Queries

Typical: SELECT<attributes>FROM<tables>
SELECT Student.FirstN, Student.LastN,
 Student.MajorID
FROM Student
WHERE Student.S_ID= 0206125;

SELECT Student.FirstN, Student.LastN
FROM Student
WHERE MajorID=14;

Join Example

Find the students of a given professor
SELECT Student.FirstN, Student.LastN,
 Faculty.LastN
FROM (Student INNER JOIN Faculty
 ON Student.Advisor = Faculty.Fac_ID)

• Notice that selection comes from the
 combined (by Inner Join) table
Guidelines for good databases:
- Build physical DB to avoid redundancy, etc.
- Each physical table represents 1 entity.
- Expect that no physical table gives any user their exact view.
- To build view, build a query that ... Joins tables together into a 'super' table. Trims out only the items the user wants.

These guidelines are not an algorithm, but they usually produce good results.

The Summary

A database is made of ...
- Physical database -- tables actually stored on the hard disk.
- Logical database -- created on-the-fly virtual tables specified by ...
- Queries -- (programs written in SQL that) define how to make a logical table from physical tables.
- GUIs -- the interface for users to DBs.

Check out Project 3