
Project 2: After Image
FIT100 Winter 2006

Have you ever stared at an image and noticed that when it disappeared, a “shadow” of the
image was still briefly visible. This is called an after image, and we experiment with its
effects in this project.

Goal: We will create a Web page to test whether we can remember the after image long
enough to help ourselves perform a simple task. Specifically, we will create the following
application:

This Web page works as follows. Three seconds after it starts, it flashes a random
arrangement of black boxes in the 7x7 grid. The arrangement is displayed for 100
milliseconds, and then disappears. The user clicks on the radio button corresponding to
the number of boxes, and gets scored. If the guess was right, the screen turns red and
changes to yellow before going back to white. The score is counted in the right hand
window. If the guess was wrong, the screen turns brown for two seconds. The score is
counted in the left hand window. Then the user can try again by clicking on “Another”.

The buttons at the bottom control the speed of the flash. Clicking on Slower increases the
time by 5 milliseconds; clicking on Faster decreases the time by five milliseconds.

 Flash Guess Winning Display

These three sample images show the stages in a successful guess. The first shows the
Flash of random black squares in the grid. In the second the squares have disappeared,
and the user is making a Guess of “4”. Since this is the correct guess, the user is shown
the correct display; the grid turns red, and then line-by-line from the bottom changes to
yellow. If the Guess had been wrong, the screen would have changed to brown for two
seconds. The user is then ready to try Another round.

Preparation. The project requires the completion of Lab 6 and Lab 7, and reading of
Chapters 18, 20 and 21. (Chapter 22 is optional, but may be useful since it solves a
similar problem.) Further information can be found at W3Schools documentation. It is
possible to start the assignment using only the information from Lab 6.

Advice. As with all Web pages, it is best to work with both a browser and the editor
open simultaneously, so that each change can be tested. Also, it is advisable that you read
and understand the whole project before beginning to work on it. Once you begin,
working through the assignment in the order given will make it easier to test. Finally,
remember that there will be a two part turn-in, explained below.

Overview. Referring to the first picture, the project has the following physical
components:

• the table,
• the (white) grid,
• the radio buttons,
• the Another button,
• the (left) Wrong and (right) Right textboxes,
• duration textbox, and
• the Slower and Faster buttons

Find them all.

In all parts of Project 2 you must comment the HTML and JavaScript that
you write or change. The comments (// followed by an explanation) need
not be long, but they must say what you’ve done in a way that is coherent
to a human. Uncommented HTML and JavaScript will not be graded.

In addition to the just-listed features of the page, there are the following actions:

• creating the grid
• coloring the grid
• displaying the random collection of black squares
• displaying the correct animation
• deciding if the guess is correct
• raising or lowering the time
• causing the first flash
• causing the Another flashes

Think about what causes each to happen and what happens.

Finally, there are five support files needed: WhiteBox.gif , BlackBox.gif ,
RedBox.gif , YellowBox.gif , BrownBox.gif . These are found in Files and
Stuff on the class Web page.

A good strategy when solving problems that look difficult—and the strategy we will
follow here—is to divide the problem into smaller pieces that are easier to solve. These
are the components we will use:

• Create the Web page with all of the buttons and textboxes, but without the grid.
• Create the grid of squares.
• Figure out how to create random black squares.
• Figure out how to make them disappear.
• Figure out how to record the radio button that was clicked.
• Figure out how to decide if the answer is right or wrong.
• Create the correct animation
• Figure out how to change the time.

Where did these steps come from? The first two set up the physical features of the Web
page. Then, the steps follow the flow of activity as someone goes through a round. This
“divide and conquer” strategy is a standard approach and you can use it whenever you
have a complicated IT task to perform.

Notice that although we developed the list by following through the process of the Web
page, we don’t necessarily have to solve them in that order. In fact, we will solve them a
little out of order.

Notice
This project has two goals: developing programming skills and problem
solving skills. For problem solving purposes parts of this assignment tell
you only generally what to do. If a task is only generally specified, do not
panic. Think about it. It will be possible to figure out what to do and that is
part of the assignment.

Task Description, Part A

The task for part A has only one goal: to set up the physical components listed above.

1. Create the Initial Page. Set up a Web page that has an attractively colored background
and contrasting text. (I have used a gold background with brown text; you must make
different choices.) Select a specific font face. Include the heading. The initial page should
have a centered table with one column and four rows. Check the page.

2. Radio Buttons. Using the Lab 6 information on forms and the data from the textbook
on radio buttons, set up the ten radio buttons in the second row of the table. Be sure that
the spacing is as shown in the figure, though your browser may display it differently.
Note that the onClick event handler for these buttons cannot be programmed yet, so
specify it as onClick='' , the last symbols being two single quotes, NOT one double
quote. Notice that radio buttons must have a common name, and you should choose a
name that makes sense to you.

3. Another Button. Using forms, create the elements of the third row, two textboxes and a
button. Notice the alignment of these three elements and using the align attribute in the
<input …> tags, make the spacing as shown. As before, the onClick event handler
cannot be programmed yet. Choose meaningful names for the textboxes.

4. Row Four. Continuing, set up the elements of the fourth row, making sure that the
spacing is correct. Choose a meaningful name for the textbox. Be sure to initialize the
value of the textbox to be 100. At this point, your page should look as follows:

 5. Got Boxes? Get the five colored boxes used in this project and store them in the
directory with the file project2A.html .

6. Create the Grid. The grid is a 7x7 array of copies of WhiteBox.gif . These white
squares are placed into the first row of the table, centered. They could be placed by the
tag

but we would require 49 (=7x7) such lines which is too much work. Instead we will use
two loops to do the work for us.

a) Begin by inserting the <script> tags as the table data for the first row of the
table. Then, declare two index variables, i and j , inside the tags.

b) Next, write two World Famous Iteration loops, nested. (See page 617.) The i
loop will be the outer loop, iterating 7 times, and the j loop will be the inner loop,
also iterating 7 times:

for (i=0; i<7; i++) {
 for (j=0; j<7; j++) {

 inner loop outer loop
 }
}

The i -loop refers to the seven rows, 0 through 6, in order going down, and the j -
loop refers to the boxes of each row, 0 through 6, in order from left to right.

c) In the body of the inner loop, use document.write() to place a copy of the
 tag shown above. Remember that the argument to
document.write() , i.e. the stuff inside the parentheses, which will be the
 tag, must be in quotes.

d) After the end of the inner loop, i.e. after the closing brace of the inner loop (}),
use document.write() to place a
 tag. It’ll have to be in quotes, too, of
course. This tag ends a row of seven boxes and moves to the next row.

Check the textbook, p. 578-580, if you do not remember how document.write()
works.

Your page should now look like the first figure in this document with the grid colored
white.

Insert the timestamp code at the end of your HTML file:

<script language = "JavaScript">
var modified;
document.write("Last Modified: ");
modified = document.lastModified;
document.write(modified);
</script>

Store your file, named project2A.html in the fit100 directory of your public Web
space.

Extra Credit to submit with Part A. Find an explanation of the human after image
effect on the Web, and write a short paragraph in your own words explaining the after
image effect. Include the paragraph at the end of your After Image page and cite sources.

End of Part A.

Task Description, Part B

The goal of task B is to finish the After Image application. This involves making the page
“work,” mostly by creating event handlers for the inputs. Make a copy of the Part A
solution, and rename it project2B.html . Follow these steps.

7. Prefetch. It’s important to prefetch the images used for animations, so that they display
quickly and do not have to be fetched over the Internet. This is a three step process, as
outlined in the textbook.

a) Declare five variables, white , brown , red , yellow and black right after the
previously placed declarations inside the first <script> tag.

b) Initialize each variable to have as its value a new Image , as in
white = new Image;

c) Assign each color name its correct gif image, as in
white.src = "WhiteBox.gif";

All five colors should now be prefetched.

8. Color the grid. In the application the grid must be colored several different colors. We
will write a function with one parameter, color , that performs this operation. The
function will be called tint() , giving it the form

function tint (color) {

}

It can be declared at the end of the <script> tags in the first row of the table.

The tint() function works very much like the grid coloring operation in Step 6. It
requires another pair of nested loops (the i and j index variables can be used again), but
this time we will not be placing an tag. Rather, we will change the
previously placed images that are stored in the document.images array of the Web
page structure, as explained on pages 626-627 of the textbook.

a) Place the nested loops in the body of the tint() function.
b) To change the gif stored in the document.images array at, say, position index,

we simply change its src field to the name of the new gif. For example, we write

document.images[index].src = "BrownBox.gif"

if we wanted to change it to the brown box. But we don’t always want to have a
brown box. Instead, we want whatever color is passed to the tint() procedure,

In all parts of Project 2 you must comment the HTML and JavaScript that
you write or change. The comments do not have to be long, but they must
say what you’ve done in a way that is coherent to a human. Uncommented
HTML and JavaScript will not be graded.

e.g. tint(brown) , so we assign the source field of the color parameter that is
passed in, as in

document.images[index].src = color.src

This is the body of the inner loop except we haven’t programmed the index
calculation yet.

c) To compute the value of index, recall that the document.images array is one

long list of the images of the Web page, listed in order that they were drawn
originally. So, the 49 box gifs of the grid are numbered 0 through 48, starting at
the top row leftmost box, and going to the last row rightmost box. So, if we know
the row (i) and the column (j) numbers of the gif, which are the indexes of the
nested loops from part (a), we can compute the position by multiplying the row
number times the length of the row (7), and adding the column number, i.e.
index= 7 * row number + column number. Fill in the proper index calculation for
the document.images reference placed in part (b).

d) Check to see if your tint() works, by placing a call to it after (not within) the

loops written in Step 6. Try the call tint(red) , which should recolor the array.
When testing is complete, remove this testing call.

9. Generate A Random Pattern. There are three ways in which the pattern is random.
The total number of squares in the pattern is a random number between 0 and 9. Then, for
each of those squares, the row and column of the square are chosen at random. We will
use the randNum() function described in the textbook, pages 588-591:

function randNum (range) {
 return Math.floor (range * Math.random());
}

Include this code following the tint() function.

The process of creating the random pattern will be packaged into a function which we
will call flash() . Write the skeleton for flash() and place it after randNum() .

The logic of flash() is simple:

a) generate a random number from 0 through 9 for the number of black boxes to
draw, randNum(10) , and assign it to a variable with a name of your choosing;
you have to declare the variable, of course.

b) set up a WFI loop which iterates once for each box we will draw, that is, the
iteration limit is the number created in step (a).

c) declare two new variables with names of your choosing, one for a row value and
the other for a column value, and assign each of them a random value from 0 to 6.

d) as with Step 8c above, compute the index position in the document.images
array and assign its src field the value black.src .

e) check your work by placing a call to the flash() function just before the
</script> tag. Each time you refresh the page, you should get a different array
of black squares.

10. Make the first flash. Our plan is that the flash() function should go off three
seconds after the page loads. To do this we set a timer, as explained on pp. 622-623.
Therefore, instead of calling flash() immediately, as in Step 9e above, we set a timer
to call it after 3000 milliseconds, i.e. after 3 seconds. We replace the Step 9e call with

setTimeout("flash()", 3000);
This sets a 3 second timer, and when it “goes off,” flash() is called.

11. Make the After Image. The black boxes should disappear after 100 milliseconds (The
user should control this, but we’ll fix this in the next step.) How do we make the black
boxes disappear in 100ms? Set a timer for 100 milliseconds, and when it wakes up, call
tint(white) . When should that be done? Immediately after the black boxes are
drawn, that is, setting the timer should be the last step in flash() . Add this timer call
as the last operation in flash() . Check that it works.

12. Event handlers for Slower/Faster. In order to control how much time passes before
the random black boxes disappear, declare a variable (I will call it dura for duration, but
you need some other name), and initialize it to 100. Replace the 100 milliseconds in the
timer call of Step 11 with that variable.

The event handlers for the two buttons will change dura . They are similar in operation:
Slower will increase the value of dura by 5, and Faster will decrease the value by 5, and
both should update the value in the textbox. I will give the textbox the name tb , but you
used a different name when you defined the box above. Follow these steps to create the
event handlers.

a) Using the ideas from Lab 6, write an onClick event handler for Slower inside
the two single quotes, which performs two operations:

i) Adds 5 to the duration variable, as in dura = dura + 5 , and
ii) Assigns the duration variable as the value of the tb window; see Lab

6. The affect is to lengthen the amount of time the black squares are
displayed.

b) Create the event handler for Faster in the same way, except that the duration
variable gets smaller by 5.

Try out the Web page and verify that the Slower/Faster buttons work properly.

13. Event handler for Another. The onClick event handler for the Another button
is now easy to write. What should it do? It must call one function. Write that event
handler.

14. Event handlers for Radio Buttons. The onClick event handlers for each of the radio
buttons are similar to Another . They also call a function (it will be written next) that

checks to see if the answer is right. Though we haven’t written it, we will use it in the
event handler, passing the amount that the user guessed. So, for example, the event
handler for the 0 radio button would be

onClick='check(0)'
Each of the radio buttons needs a similar event handler that passes its amount to
check() .

15. Testing if the Guess is Right. Writing the check() function is simple. We give its
structure

function check (guess) {

}

and fill in the operations. The logic requires that we test the guess parameter to see if it
matches the value randomly selected in Step 9a. This will require an if -statement, of
course. If guess and the random number are equal, that is, our == test is true, we

• add one to the value in the right hand textbox (see Lab 6),
• tint the grid red, (we will color it yellow below), and
• set a timer to recolor the window white in 2 seconds=2000 milliseconds.

If the guess is wrong, i.e. our == test is false and we’re the else -statement, we
• add one to the value of the left hand textbox (see Lab 6),
• tint the grid brown,
• set a timer to recolor the window white in 2 seconds.

Construct the function check() so that it performs this computation.

16. Extra Credit: Animate the Correct Display. To begin, change the timer that follows
the red tinting so that instead of setting time, it calls add1row(6) .

The function add1row() has one parameter, the row to change to yellow. It does so,
and then sets a timer to call itself in 200 milliseconds with one smaller row, unless the
row is 0, i.e. this is the last row. In that case it sets the timer to tint the grid white. The
function is

function add1row (row) {

}

and the operation is as follows.
a) The function begins by using a WFI to change the seven boxes of row row to

yellow, in the same way as in Step 8b. The index j , used in other places can be
used here as the index variable. Notice that only indexes for the seven boxes of a
single row are changed.

b) Next, check to see if row is equal to zero. If it is, set a timer for 200ms, and when
it goes off, tint the grid white as usual.

c) If row is not equal to zero, call add1row() again with row-1 as its argument in
the parentheses. Caution: the computation (row-1) cannot be inside any
quotation marks, so it will be necessary to compose the first argument of the
setTimeout() call using concatenation.

d) Check to see that the function works properly.
Be sure the Last Modified text is included, and place your project2B.html file in your
fit100 directory in your public Web space, together with the five image files.

Grading. The two turn-ins are graded on the same criteria. Points will be assigned in the
grading as follows:

• Are components of the page in place?
• Are requirements such as “choose a color” fulfilled?
• Does the page work as required?
• Is the HTML and the JavaScript well formed?
• Is the HTML and the JavaScript documented? (If your TA can’t understand it, it

might not get graded.)

