
Midterm 2 Review Sheet INFO/CSE 100
 Spring 2005

DWJohnson Page 1 of 6

This is a list of topics that we have covered since midterm exam 1. This is not all inclusive of
every detail and there may be items on the exam that are not explicitly listed here, but these are
the primary topics of interest.

For specific examples of the various JavaScript constructs described here, refer to the lecture
notes, the labs, and the homework.

Computer Basics

Layers of abstraction are used to describe the design of computer software and hardware
systems. The fundamental idea is that describing the characteristics of the objects in a layer lets
you understand the operation of that layer without having to know exactly how it accomplishes
the stated functions. This is a very powerful concept since it means that you can do useful work
while only understanding a portion of the whole system. Also, it means that a layer can be
re-implemented using a different technology without affecting any of the layers above it.

Architecture and Organization are two terms that are used in order to distinguish between the
definition of a layer and the actual implementation of the layer. There is only one layer per
definition, since the definition is the only thing that actually exists for an abstract layer.
However, there may be many different implementations of that definition. Thus, there are
numerous implementations of the PowerPC Instruction Set Architecture. The different
implementations provided different mixes of characteristics. Some are fast but costly. Some are
slow but inexpensive. Some run hot, others are relatively cool. Etc.

At a high level, computers can be thought of as having a Processor, Memory, and a set of
Input/Output devices. Most of the electronics in a computer (the processor, the memory, and the
control circuitry for I/O) is implemented with transistors in Integrated Circuits. The rapid and
continuing increase in the number of transistors that can be packed into an IC is a major reason
for the growth of computer capability over the last few decades.

The processor implements a fetch and execute cycle. It fetches an instruction from memory,
decodes the meaning of the instruction, gets the data it needs for the instruction, executes the
requested instruction, and stores the result back in the destination address. All processors
operate this way, although they differ significantly in the details of how they do it.

Memory is the storage space where instructions and data are stored. On most modern systems,
memory can be addressed in byte-sized chunks (8-bits) and the size of the memory is fairly large
(500 MegaBytes to several GigaBytes).

Input / Output devices move data values from the computer to the outside world and vice-versa.
IO devices vary widely in terms of speed, ranging from the slow (keyboard, clicker receiver) to
the fast (disk drive, network interface).

Midterm 2 Review Sheet INFO/CSE 100
 Spring 2005

DWJohnson Page 2 of 6

Algorithms

An algorithm is a precise, systematic method to produce a desired result. For an algorithm to be
well specified it must have:

• Inputs specified The range of possible inputs is well defined
• Outputs specified The desired output is well defined
• Definiteness The steps to take are definite and understandable
• Effectiveness The steps must be possible to accomplish
• Finiteness A processor that follows the algorithm will eventually finish

JavaScript Intro

JavaScript is one of many “scripting” languages used to add dynamic capabilities to web pages.
A basic HTML page is static, and it is rendered the same way each time it is displayed. Scripting
languages let us create and update pages “on the fly” to respond to dynamic conditions and user
inputs.

The program code for a script on a web page is identified using <script> and </script>
tags. These tags can appear in the <head> or the <body> of a web page. Between the tags the
program is specified as a series of statements. In general, each statement ends with a semi-colon
“;”. When the browser is reading the page to display, it also reads the embedded code.
Depending on how the code is written, it is either executed immediately as it is read in, or it is
executed later in response to user commands.

A variable has a name and a value. The name of a variable starts with a letter, followed by
letters, numbers, or the underscore character “_”. A common convention for naming variables is
that they start with a lower case letter and if the name comprises several words they are all run
together with the second and following words capitalized. Examples are index,
riverCount, dotWidth.

Variables are containers for values. Common values are numbers (0, 1, 3.14159, -7), strings
(“hi”, “car”, “Hello there”), and boolean (true or false).

Expressions are combinations of variables and literal values using appropriate operators. Note
that a single value (like 5 or “texas”) is a very simple expression in its own right. Similarly, a
single variable name can be the entire definition of an expression, if that is appropriate.
Expressions are formulas that say how to manipulate existing values to calculate a new value.
The math operators that we have discussed are +, -, *, /. The + operator is also used to
concatenate string values to make a new string. The relational operators are >, <, >=, <=,
==, and !=. Be sure to recognize the use of the double equals “==” for equality checking.
The boolean operators are “&&” (and), “||” (or), and “!” (not). The boolean operators are used
to combine boolean (true or false) operands to calculate a new boolean value.

An assignment statement takes the value of the expression on the right-hand side of a single
equals sign and assigns that value to the variable named on the left-hand side of the equals sign.

Midterm 2 Review Sheet INFO/CSE 100
 Spring 2005

DWJohnson Page 3 of 6

Thus sum=2+2; assigns the value 4 to the variable sum. Assignment statements can be used
with numbers, strings, and boolean operands (among others), as well as functions that return
values of these types.

Functions

A function is a way to bundle a set of instructions and give them a name so that you can reuse
them easily. Functions have a specific layout within a <script> block.

function name(parameter list){
statements

}

name ← The function name is an identifier like a variable name.
parameter list ← The parameter list is a list of input variables for the function.
statements ← The statements do the actual work accomplished by the function.

Our practice in this class has been to define functions in the <head> block, and use them with
calls from code in the <body> block. This is not the only way to organize JavaScript programs,
but it is clear and readable and avoids some potential problems.

The name of a function must be unique within the program. The names are composed the same
way that variable names are.

The parameter names are also identifiers. They are the variable names that your function uses
when it is performing its calculations. When the function is called, the calling code supplies a
value for each parameter. Within the body of the function, those values are assigned to the
parameter names and the statements in the function body can use the parameter names to access
the supplied values.

The function body includes whichever statements are required to implement the desired
capability. Functions have access to variables defined outside of any function body (global
variables) or can define their own variables inside the function body (local variables). Global
variables are defined throughout the life of the program, whereas local variables are defined only
for the period of time while the function is executing.

If necessary, a function can return a value to its caller using the return statement, eg,
return count;. This is not always necessary because functions are often expected to
complete their action internally by setting some visible field in the web page or setting the value
of some global variable.

There are many functions provided by JavaScript language. Some functions that we have used
include the following. For strings, charAt(position), toLowerCase(), and
toUpperCase(). For arrays, join(separator string), sort(), and reverse(). To
write text into an HTML document being created, use document.write(string). To get a
random number, use Math.random().

Midterm 2 Review Sheet INFO/CSE 100
Spring 2005

DWJohnson Page 4 of 6

Control Flow

We studied two primary statements for controlling the flow of execution in a JavaScript
program: the if/else statement and the for loop.

The if/else statement has the following format:

if (boolean expression){
 statements
} else {
 statements
}

The boolean expression is evaluated. If the expression is true, then the first block of
statements is executed and the second block is skipped. If the expression is false, then the
first block is skipped, and the second block is executed.

The else block is optional. If there is no else block, the boolean expression is evaluated as
before. If the expression is true, then the given block of statements is executed. If the
expression is false, then the given block of statements is skipped.

The for loop statement has the following format:

for (initialize; limit check; update) {
<loop body statements>

}

The initialize statement is executed once before the loop begins operation. The limit check
statement is executed before each iteration of the loop. If it evaluates to true, the statements in
the body of the loop are executed. If it evaluates to false, then the looping is done and
execution continues with the first statement following the loop body. The update statement is
executed after each iteration of the loop.

A common way to write the update statement is i++ (assuming that i is the loop control
variable). This is shorthand for i=i+1.

If the limit check is false the first time it is evaluated, then the loop body is skipped entirely.

For loops are used in many different ways. They can be used to sum up a set of values, inspect
every item in an array or string, advance a calculation a certain number of steps, and so on.

Midterm 2 Review Sheet INFO/CSE 100
 Spring 2005

DWJohnson Page 5 of 6

Graphical User Interfaces (GUI)

One of the powerful capabilities of HTML and JavaScript combined is the ability to provide a
graphical user interface for application programs.

Important HTML tags related to GUIs are <form>, <input>, and <button>. The form tag
defines a block of input/output controls visible to the user.

The input and button tags are two examples of controls that are placed within forms. There
are several categories of input control, including radio buttons, checkboxes, and text.

Important attributes associated with these tags are id, name, onclick, and value. The id is
an identifying string that must be unique within the entire page. The id can be used to retrieve
information about the specific control using the function
document.getElementById(id string). The name attribute is used as a secondary
identifier in modern HTML. For example, all radio buttons in one group have the same name,
although they must have different ids. The onclick attribute provides a little bit of JavaScript
code that is executed when the user clicks on this control. In this class, we have generally put a
function call as the onclick value, and then defined whatever we want in the function. The
value attribute can be used to set the initial value for a text control.

Arrays

We use arrays to maintain simple ordered lists of elements. The elements can be numbers,
strings, boolean values, or more complex objects like form elements. Arrays have a length
property that you can get and set. The items in an array are indexed and the index starts at 0 (not
at 1!). So an array myStuff that has 3 items in it has a length of 3 and the items are accessible
using myStuff[0], myStuff[1], and myStuff[2]. An array can be created using the
Array constructor or using an array literal. The following code creates and initializes two
3-element arrays.

var pets = new Array(3);
pets[0] = "Smoky";
pets[1] = "Browny";
pets[2] = "Shadow";
var people = ["Alice", "Bob", "Carol"];

An important use of the for loop is looking at each item in an array in turn and doing something
with one or more of the items like finding the maximum or summing the items.

As mentioned earlier, useful functions for working with arrays include join(separator string),
sort(), and reverse().

Midterm 2 Review Sheet INFO/CSE 100
Spring 2005

DWJohnson Page 6 of 6

Document Object Model

Your web browser builds a model of the web page (the document) that includes all the objects in
the page (tags, text, etc). This model is called the Document Object Model. All of the
properties, methods, and events available to the web developer for manipulating and creating
web pages are included in this model. The structure of the model is initially defined by the
HTML that defines the page, but it can be changed dynamically by the program if desired.

The elements in the model are arranged in a tree structure. Each HTML tag in the page is a node
in the tree. The program code can traverse this tree structure several different ways. The way
we have used in our class is to give a tag of interest a specific unique id attribute, then use the
function document.getElementById(element id) to retrieve the element. Once we have
a reference to a particular element we can read and change its various properties as appropriate.

At the top level of the tree, information is available about the web page as a whole. Thus we can
find out things like title, referrer, domain, and URL.

The details of the Document Object Model are changing as new standards are defined. However,
the basic idea of a model of a well-structured document is very important and will only become
more important as time goes on. XML (eXtendible Markup Language) is becoming a very
important standard for defining data structure, and in fact the latest revision of HTML is defined
in terms of the XML standard.

Context

We have spent a lot of time studying HTML and JavaScript because they are a good example of
the use of static data structures and dynamic programming languages.

HTML forms the basic structure for web pages. Modern trends are to separate the structural
description of the data the presentation of the data to the user. We process the information
according to the content, and display the information as appropriate to the user's needs at the
time.

Programming languages like JavaScript make management and display dynamic rather than
static. We can select, filter, and combine information using a program. We can modify the
display dynamically depending on user input requests. There are numerous other programming
languages, varying depending on their intended purpose and place in the overall computer
system architecture (client side, server side, dynamically loaded, installed once, etc).

