Social Computing

INFO/CSE 100, Spring 2005
Fluency in Information Technology

http://www.cs.washington.edu/100
Readings and References

• Reading
 » Fluency with Information Technology
 • Chapters 12
Communicating over IT

- Synchronous communication
 - Instant messaging
 - Internet Relay Chat (IRC)
- Asynchronous communication
 - Email
 - Bulletin Boards
 - UseNet news
 - Blogs
 - SMS
Problems with Text Communication

- Conveying emotion
 » Emoticons :-), :D, ^--^
- Too much _emphasis_ ???
- Pace
- Ambiguity
 » Sarcasm?!?
- Flame Wars
 » Revenge of the Inconsolable Responder
Email Netiquette

- Only discuss 1 topic at a time
- Use a descriptive subject line
- Limit size and type of attachments
- Don't forward SPAM
- Use vacation messages (automated replies)
- Avoid mass mailing (use group aliases)
- Answer your email from the most current to the least current
Internet Netiquette

• Moderation
 » And administrative or authoritative person who listens and/or approves communication

• http://www.dtcc.edu/cs/rfc1855.html
 » Email
 » Usenet
 » Chat
Passwords

• Passwords are used to limit computer or software access
• Should be changed on a periodic basis (every 90 days at the UW)
• Forgotten passwords?!?
 » As the administrator to reset it for you
• Select password topic areas
• Encode password with alternative characters
Intellectual Property

- Software licenses
 - use
 - shareware
 - freeware
- Copyright gives the owner the right to:
 - Make a copy of the work
 - Use for a derivate work
 - Distribute or publish
 - Publicly perform/display
Why Study Databases?

• Some of us want to compute, but all of us want information …
 • Much of the archived information is in tables
 • Databases enhance applications, e.g. Web
 • Once you know how to create databases, you can use them to personal advantage
 • Databases introduce interesting ideas
How to organize the data?

• Before relational databases (the kind we study) there were only “flat files”
 » Structural information is difficult to express
 » All processing of information is “special cased”
 • custom programs are needed
 » Information repeated; difficult to combine
 » Changes in format of one file means all programs that ever process that file must be changed
 • eg, adding ZIP codes
tab-delimited file example

Download of Variation Data (Single File)

Global Prettybase Files

This is a tab delimited text file in our "prettybase" format, which describes all SNP sites discovered by the SeattleSNPs PGA. The format of this file is:

Line format:

<chromosome position-chromosome-HUGO_NAME > <PGA Sample ID> <Allele1> <Allele2>

Example: 74772592-10-FLAU D001 G T

The 'chromosome position' is generated from mapping to the most recent genome assembly available from the [UCSC Genome Assembly](http://genome.ucsc.edu).

<table>
<thead>
<tr>
<th>Chromosome</th>
<th>Sample ID</th>
<th>Allele1</th>
<th>Allele2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1100322-IL3RA-X</td>
<td>D001</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>1100322-IL3RA-X</td>
<td>D002</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>1100322-IL3RA-X</td>
<td>D003</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>1100322-IL3RA-X</td>
<td>D004</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>1100322-IL3RA-X</td>
<td>D005</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>1100322-IL3RA-X</td>
<td>D006</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>1100322-IL3RA-X</td>
<td>D007</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>1100322-IL3RA-X</td>
<td>D008</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>1100322-IL3RA-X</td>
<td>D009</td>
<td>A</td>
<td>G</td>
</tr>
<tr>
<td>1100322-IL3RA-X</td>
<td>D010</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>1100322-IL3RA-X</td>
<td>D011</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>1100322-IL3RA-X</td>
<td>D012</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>1100322-IL3RA-X</td>
<td>D013</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>1100322-IL3RA-X</td>
<td>D014</td>
<td>A</td>
<td>G</td>
</tr>
<tr>
<td>1100322-IL3RA-X</td>
<td>D015</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>1100322-IL3RA-X</td>
<td>D016</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>1100322-IL3RA-X</td>
<td>D033</td>
<td>A</td>
<td>G</td>
</tr>
<tr>
<td>1100322-IL3RA-X</td>
<td>D034</td>
<td>A</td>
<td>G</td>
</tr>
<tr>
<td>1100322-IL3RA-X</td>
<td>D035</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>1100322-IL3RA-X</td>
<td>D036</td>
<td>A</td>
<td>G</td>
</tr>
<tr>
<td>1100322-IL3RA-X</td>
<td>D037</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>1100322-IL3RA-X</td>
<td>D038</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>1100322-IL3RA-X</td>
<td>D039</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>1100322-IL3RA-X</td>
<td>D040</td>
<td>G</td>
<td>G</td>
</tr>
</tbody>
</table>

...
Unix termcap example

FILE FORMAT:
The version you are looking at may be in any of three formats: master
(terminfo with OT capabilities), stock terminfo, or termcap. You can
tell
which by the format given in the header above.
The master format is accepted and generated by the terminfo tools in the
ncurses suite; it differs from stock (System V-compatible) terminfo only
in that it admits a group of capabilities (prefixed `OT') equivalent to
various obsolete termcap capabilities.
...
ANSI capabilities are broken up into pieces, so that a terminal
implementing some ANSI subset can use many of them.
ansi+local:\
 :do=\E[B:le=\E[D:nd=\E[C:up=\E[A:
ansi+local:\
 :DO=\E[%dB:LE=\E[%D:RI=\E[%dC:UP=\E[%dA:tc=ansi+local:
ansi+tabs:\
 :bt=\E[Z:ct=\E[2g:st=\E[H:ta=^I:
ansi+inittabs:\
 :it#8:tc=ansi+tabs:
Library example

<table>
<thead>
<tr>
<th>ISBN</th>
<th>Title</th>
<th>AuID</th>
<th>AuName</th>
<th>AuPhone</th>
<th>Pub ID</th>
<th>PubName</th>
<th>PubPhone</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1111-1111-1</td>
<td>C++</td>
<td>4</td>
<td>Roman</td>
<td>444-444-4444</td>
<td>1</td>
<td>Big House</td>
<td>123-456-7890</td>
<td>$29.95</td>
</tr>
<tr>
<td>0-99-999999-9</td>
<td>Emma</td>
<td>1</td>
<td>Austen</td>
<td>111-111-1111</td>
<td>1</td>
<td>Big House</td>
<td>123-456-7890</td>
<td>$20.00</td>
</tr>
<tr>
<td>0-91-335678-7</td>
<td>Fairie Queene</td>
<td>7</td>
<td>Spencer</td>
<td>777-777-7777</td>
<td>1</td>
<td>Big House</td>
<td>123-456-7890</td>
<td>$15.00</td>
</tr>
<tr>
<td>0-91-045678-3</td>
<td>Hamlet</td>
<td>3</td>
<td>Shakespeare</td>
<td>555-555-5555</td>
<td>2</td>
<td>Alpha Press</td>
<td>999-999-9999</td>
<td>$20.00</td>
</tr>
<tr>
<td>0-103-45678-9</td>
<td>Iliad</td>
<td>3</td>
<td>Homer</td>
<td>333-333-3333</td>
<td>1</td>
<td>Big House</td>
<td>123-456-7890</td>
<td>$25.00</td>
</tr>
<tr>
<td>0-12-345678-6</td>
<td>Jane Eyre</td>
<td>1</td>
<td>Austen</td>
<td>111-111-1111</td>
<td>3</td>
<td>Small House</td>
<td>714-000-0000</td>
<td>$49.00</td>
</tr>
<tr>
<td>0-99-777777-7</td>
<td>King Lear</td>
<td>5</td>
<td>Shakespeare</td>
<td>555-555-5555</td>
<td>2</td>
<td>Alpha Press</td>
<td>999-999-9999</td>
<td>$49.00</td>
</tr>
<tr>
<td>0-555-55555-9</td>
<td>Macbeth</td>
<td>5</td>
<td>Shakespeare</td>
<td>555-555-5555</td>
<td>2</td>
<td>Alpha Press</td>
<td>999-999-9999</td>
<td>$12.00</td>
</tr>
<tr>
<td>0-11-345678-9</td>
<td>Moby Dick</td>
<td>2</td>
<td>Melville</td>
<td>222-222-2222</td>
<td>3</td>
<td>Small House</td>
<td>714-000-0000</td>
<td>$49.00</td>
</tr>
<tr>
<td>0-12-333433-3</td>
<td>On Liberty</td>
<td>8</td>
<td>Mill</td>
<td>888-888-8888</td>
<td>1</td>
<td>Big House</td>
<td>123-456-7890</td>
<td>$25.00</td>
</tr>
<tr>
<td>0-321-32132-1</td>
<td>Balloon</td>
<td>13</td>
<td>Sleepy</td>
<td>321-321-1111</td>
<td>3</td>
<td>Small House</td>
<td>714-000-0000</td>
<td>$34.00</td>
</tr>
<tr>
<td>0-321-32132-1</td>
<td>Balloon</td>
<td>11</td>
<td>Snoopy</td>
<td>321-321-2222</td>
<td>3</td>
<td>Small House</td>
<td>714-000-0000</td>
<td>$34.00</td>
</tr>
<tr>
<td>0-321-32132-1</td>
<td>Balloon</td>
<td>12</td>
<td>Grumpy</td>
<td>321-321-0000</td>
<td>3</td>
<td>Small House</td>
<td>714-000-0000</td>
<td>$34.00</td>
</tr>
<tr>
<td>0-55-123456-9</td>
<td>MainStreet</td>
<td>10</td>
<td>Jones</td>
<td>123-333-3333</td>
<td>3</td>
<td>Small House</td>
<td>714-000-0000</td>
<td>$22.95</td>
</tr>
<tr>
<td>0-55-123456-9</td>
<td>MainStreet</td>
<td>9</td>
<td>Smith</td>
<td>122-222-2222</td>
<td>3</td>
<td>Small House</td>
<td>714-000-0000</td>
<td>$22.95</td>
</tr>
<tr>
<td>0-123-45678-0</td>
<td>Ulysses</td>
<td>6</td>
<td>Joyce</td>
<td>666-666-6666</td>
<td>2</td>
<td>Alpha Press</td>
<td>999-999-9999</td>
<td>$34.00</td>
</tr>
<tr>
<td>1-22-233700-0</td>
<td>Visual Basic</td>
<td>4</td>
<td>Roman</td>
<td>444-444-4444</td>
<td>1</td>
<td>Big House</td>
<td>123-456-7890</td>
<td>$25.00</td>
</tr>
</tbody>
</table>

from Access Database book, Steve Roman

notice the redundancy
Relational Databases

• Information is stored in tables
 » Tables store information about *entities*
 » Entities have characteristics called *attributes*
 » Each row in a table represents a single entity
 • Each row is a set of attribute values
 • Every row must be unique, identified by a key
 » Relationships -- associations among the data values are stored

Table structure = schema
Table contents = instance
A Table in a Database

Tables have names, attributes, rows

<table>
<thead>
<tr>
<th>ID</th>
<th>Last</th>
<th>First</th>
<th>JobID</th>
<th>Hire</th>
<th>Street</th>
<th>City</th>
<th>State</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Davalino</td>
<td>Nancy</td>
<td>0</td>
<td>5/1/1992</td>
<td>507 20th Ave E</td>
<td>Seattle</td>
<td>WA</td>
<td>USA</td>
</tr>
<tr>
<td>2</td>
<td>Fuller</td>
<td>Andrew</td>
<td>3</td>
<td>8/14/1992</td>
<td>908 W. Capital Way</td>
<td>Seattle</td>
<td>WA</td>
<td>USA</td>
</tr>
<tr>
<td>3</td>
<td>Wooster</td>
<td>Berton</td>
<td>1</td>
<td>4/1/1993</td>
<td>722 Moss Bay Blvd</td>
<td>Seattle</td>
<td>WA</td>
<td>USA</td>
</tr>
<tr>
<td>4</td>
<td>Peacock</td>
<td>Margaret</td>
<td>2</td>
<td>5/3/1993</td>
<td>4110 Old Redmond Rd</td>
<td>Kirkland</td>
<td>WA</td>
<td>USA</td>
</tr>
<tr>
<td>5</td>
<td>Buchanan</td>
<td>Steven</td>
<td>3</td>
<td>10/17/1994</td>
<td>13 Garrett Hill</td>
<td>Seattle</td>
<td>WA</td>
<td>USA</td>
</tr>
<tr>
<td>6</td>
<td>Sullimani</td>
<td>Okan</td>
<td>2</td>
<td>12/12/1994</td>
<td>Coventry House</td>
<td>Seattle</td>
<td>WA</td>
<td>USA</td>
</tr>
</tbody>
</table>

Schema for Example table:

- ID: number, unique number (Key)
- Last: text, person’s last name
- First: text, person’s first name
- JobCode: number, current position
- Hire: date, first day on job

...
Two tables in a database
Redundancy in a database is Very Bad

• Not every assembly of tables is a good database

• Repeating data is a bad idea
 » Replicated data can differ in its different locations, e.g. multiple addresses can differ
 • Inconsistent data is worse than no data
 » Keep a *single copy* of any data
 • if it is needed in multiple places, associate it with a key and store key rather than the data
Relationships between tables
“You can look it up”

• When looking for information, a single item might be the answer, but a table is more likely
 » Which employees live in Kirkland?
 • Table of employees
 » Who is taking INFO/CSE 100?
 • Table of students
 » Whose mile run time $\leq 4:00$?
 • Table of runners
Relational Algebra: Tables From Tables

There are five basic “algebraic” operations on tables:

- Select -- pick rows from a table
- Project -- pick columns from a table
- Union -- combine two tables w/like columns
- Difference -- remove one table from another
- Product -- create “all pairs” from two tables

From this basis, many more complicated operations can be built up