
5/11/05 fit100-19-review © 2005 University of Washington 1

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Digital Information

INFO/CSE 100, Spring 2005
Fluency in Information Technology

http://www.cs.washington.edu/100

5/11/05 fit100-19-review © 2005 University of Washington 2

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Readings and References

• Reading
» Fluency with Information Technology

• Chapters 9, 11 18-21

5/11/05 fit100-19-review © 2005 University of Washington 3

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Overview

• During this quarter, we're looking at the
actual workings of computer systems

• Organized as “layers of abstraction”
» application programs
» higher level languages: Javascript, SQL, …
» operating system concepts
» bits, bytes, assembly language
» transistors, electrons, photons

5/11/05 fit100-19-review © 2005 University of Washington 4

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Layers of Abstraction

• At any level of abstraction, there are
» elements at that level
» the building blocks for those elements

• Abstraction
» isolates a layer from changes in the layer

below
» improves developer productivity by reducing

detail needed to accomplish a task
» helps define a single architecture that can be

implemented with more than one organization

5/11/05 fit100-19-review © 2005 University of Washington 5

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Architecture & Organization

• Architecture (the logical definition)
» defines elements and interfaces between layers
» Instruction Set Architecture

• instructions, registers, addressing

• Organization (the physical implementation)
» components and connections
» how instructions are implemented in hardware
» many different organizations can implement a

single architecture

5/11/05 fit100-19-review © 2005 University of Washington 6

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Computer Architecture

• Specification of how to program a specific computer
family
» what instructions are available?
» how are the instructions formatted into bits?
» how many registers and what is their function?
» how is memory addressed?

• Some examples architectures
» IBM 360, 370, …
» PowerPC 601, 603, G5, …
» Intel x86 286, 386, 486, Pentium, …
» MIPS R2000, R3000, R4000, R5000, ...

5/11/05 fit100-19-review © 2005 University of Washington 7

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Computer Organization

• Processor
» Data path (ALU) manipulate the bits
» The control controls the manipulation

• Memory
» cache memory - smaller, higher speed
» main memory - larger, slower speed

• Input / Output
» interface to the rest of the world

5/11/05 fit100-19-review © 2005 University of Washington 8

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

A Typical Organization

main
memory

I/O bus

network
interface

hard
disk

floppy
disk

CDROM
drive

serial
ports

processorprocessor/memory bus

5/11/05 fit100-19-review © 2005 University of Washington 9

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Memory Output

ALU Control Input

Mouse
Keyboard
Scanner

Hard Disk
Floppy Disk

Monitor
Printer
Speakers

Anatomy of a Computer

Processor

5/11/05 fit100-19-review © 2005 University of Washington 10

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Fetch/Execute Cycle

Instruction Fetch (IF)
Instruction Decode (ID)
Data Fetch (DF)
Instruction Execution (EX)
Result Return (RR)

Computer = instruction execution engine
» The fetch/execute cycle is the process that

executes instructions

5/11/05 fit100-19-review © 2005 University of Washington 11

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

0

G
1

o
2

D
3

a
4

w
5

g
6

s
7

!
8

!
9

0
10

...
11

0
byte=8 bits

1 0 0 0 1 0 0

memory addresses
Memory locations

memory contents

Memory ...

Programs and the data they operate on must be
in the memory while they are running

5/11/05 fit100-19-review © 2005 University of Washington 12

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

6
10

11

12

13

14

15

12
16 17 18 19

18
20

...
21

Control
• The Fetch/Execute cycle is hardwired into the computer’s

control, i.e. it is the actual “engine”
• Depending on the Instruction Set Architecture, the instructions

say things like
» Put in memory location 20 the contents of memory location 10 +

contents of memory location 16
» The instructions executed have the form ADDB 10, 16, 20

• Add the bytes from memory address 10 and memory address 16 and
store the result in memory address 20

5/11/05 fit100-19-review © 2005 University of Washington 13

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

ALU

Most computers have only about a 100-150 instructions hard wired

Depending on the Instruction Set Architecture, each type of
data has its own separate instructions

ADDB : add bytes ADDBU : add bytes unsigned
ADDH : add half words ADDHU : add halves unsigned
ADD : add words ADDU : add words unsigned
ADDS : add short decimal numbers
ADDD : add long decimal numbers

The Arithmetic/Logic Unit does the actual
computation

5/11/05 fit100-19-review © 2005 University of Washington 14

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Input/Output

• Input units bring data to memory from outside
world; output units send data to outside world
from memory
» Most peripheral devices are “dumb”, meaning

that the processor assists in their operation

5/11/05 fit100-19-review © 2005 University of Washington 15

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

112

113

114

115 116 117 118 119 120

...
121

ADD 210,216,220 AND 414,418,720

Program Counter: 112

OR

The PC’s PC
• The program counter (PC) tells where the next

instruction comes from
» In some architectures, instructions are always 4

bytes long, so add 4 to the PC to find the next
instruction

5/11/05 fit100-19-review © 2005 University of Washington 16

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Clock rate is not a good indicator of speed anymore,
because several things are happening every clock cycle

Clocks Run The Engine
• The rate that a computer “spins around” the

Fetch/Execute cycle is controlled by its clock
» Current clocks run 2-3 GHz
» The computer tries do at least one instruction per

cycle, depending on the instruction and the
availability of memory contents

» Modern processors often try to do more than one
instruction per cycle

5/11/05 fit100-19-review © 2005 University of Washington 17

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Algorithm

• Algorithm
» a precise, systematic method to produce a desired result

• For example, the placeholder technique for
deleting a short string except where it occurs in
longer strings is an algorithm with an easy
specification:

longStringWithShortStringInIt ← placeholder
ShortString ← e
placeholder ← longStringWithShortStringInIt

5/11/05 fit100-19-review © 2005 University of Washington 18

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Programs vs Algorithms
• A program is an algorithm specialized to a

particular situation
» an Algorithm

longStringWithShortStringInIt ← placeholder
ShortString ← e
placeholder ← longStringWithShortStringInIt

» a Program that implements the Algorithm
↵↵ ← # // replace double <newlines> with <#>
↵ ← e // delete all single < newlines>
← ↵↵ // restore all double <newlines>

5/11/05 fit100-19-review © 2005 University of Washington 19

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Variables In Real Life
• A variable is a "container" for information

you want to store
» The name of the variable stays the same, but the

value associated with that name can change
That’s why it’s called a “variable”!

Variable Name Current Value Previous Value

#1 Single My Boo, Usher And Alicia Keys Goodies, Ciara
AL Champion Boston Red Sox New York Yankees
#1 Box Office Shark Tale Shark Tale
Day Of The Week Monday Sunday
Husky Card Balance $52 $60

5/11/05 fit100-19-review © 2005 University of Washington 20

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Variables In Programming
• Program variables have names and values

» Names (also called identifiers)
• generally start with a letter and can contain letters, numbers,

and underscore characters “_”
• Names are case sensitive

» Values
• can be numbers, strings, boolean, etc
• change as the program executes

Variable Name Current Value Previous Value

No_1_Single My Boo, Usher And Alicia Keys Goodies, Ciara
ALChampion Boston Red Sox New York Yankees
No_1_Box_Office Shark Tale Shark Tale
dayOfTheWeek Monday Sunday
huskyCardBalance $52 $60

5/11/05 fit100-19-review © 2005 University of Washington 21

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Variable Declarations
<script type="text/javascript">

var eyeColor; <<< undefined!

var eyeColor = "green"; <<< initialized

var eyeColor = ""; <<< initilized, empty

var eyeColor = "green", hairColor="blonde";

hairColor = "carmel";

</script>

5/11/05 fit100-19-review © 2005 University of Washington 22

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Basic Data Types in Javascript

Numbers:
var gasPrice = 2.55;

Strings
var eyeColor = "hazel green";

Boolean
var isFriday = true;
var isWeekend = 0;

5/11/05 fit100-19-review © 2005 University of Washington 23

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Expressions

• The right-hand side of an assignment
statement can be any valid expression

• Expressions are “formulas” saying how to
manipulate existing values to compute new
values

balance = balance - transaction;
seconds = 60*minutes;
message = "Status code is " + codeValue;
isFreezing = (temp < 32);

5/11/05 fit100-19-review © 2005 University of Washington 24

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Operators
Use operators to build expressions

» Numeric operators
+ - * / mean add, subtract, multiply, divide
3 + 3 = 6

» String operator
+ means concatenate strings
"3" + "3" = "33"

» Relational operators
< <= == != >= > mean less than, less than or equal to, equal to, not
equal to, greater than or equal to, greater than

» Boolean operators
&& || ! mean and, or, not

5/11/05 fit100-19-review © 2005 University of Washington 25

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Functions
A function is a way to bundle a set of instructions

and give them a name so that you can reuse them
easily

Functions have a specific layout
» <name> ← the function name is an identifier
» <parameter list> ← list of input variables for the function
» <statements> ← the statements do the work

function <name> (<parameter list>) {
 <statements>
}

5/11/05 fit100-19-review © 2005 University of Washington 26

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Example Function

Write a simple function to compute the Body Mass Index
when the inputs are in English units (ie, US units)

function <name> (<parameter list>) {
 <statements>
}

// Calculate Body Mass Index in English units
// weight in pounds
// height in inches
// returns body mass index

function bmiE(weightLBS, heightIN) {
 var heightFt = heightIn / 12; // convert to feet
 return 4.89 * weightLBS / (heightFt * heightFt);
}

template

example

5/11/05 fit100-19-review © 2005 University of Washington 27

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Global or Local?!?
• Scope of a variable describes where and when it can be

referenced
» Local variables are only known inside of a function (curly braces)
» Global variables are know by all the Javascript inside of <script>

</script> pairs

// Calculate Percentage of Study Hours/Week
// time in hours
// returns hours
var days = 7;
function calculateStudyHrs(time) {
 var totalHrs = 24 * days;
 return time/totalHrs;
}

5/11/05 fit100-19-review © 2005 University of Washington 28

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Layout of the GUI

• The layout of the page is controlled with HTML in the body
of the page

• The layout and controls are provided using new tags
» <form id="buttonForm">
» <button type="button" ...
» <input type="text" …
» <input type="radio" …
» <button type="reset" …

<body>
 HTML form layout and specification
</body>
</html>

5/11/05 fit100-19-review © 2005 University of Washington 29

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

A simple example
This GUI has several simple controls.

Two buttons to control the results

One text field to display the results

One pair of radio buttons to control the display

One button to reinitialize

http://www.cs.washington.edu/education/courses/100/04au/slides/13-gui/gui.html

5/11/05 fit100-19-review © 2005 University of Washington 30

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

<button type="button" ...>

<form>
<button type="button"
 onclick="setResults('good results')">Good Results</button>
<button type="button"
 onclick="setResults('bad results')">Bad Results</button>
</form>

• a <button> can have one of three types
» type “button” is used locally
» type “ submit” sends data back to the server
» type “reset” re-initializes the form

• the value of the “onclick” attribute is some
JavaScript code, in this case a call to the function
setResults(string)

5/11/05 fit100-19-review © 2005 University of Washington 31

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

<input type="text" ...>
<form>
Result:
<input type="text" value="nada" readonly id="resultField">

<input type="radio" name="case" id="radioLC" checked
 onclick="setResults(document.getElementById('resultField').value)">Lowercase
<input type="radio" name="case" id="radioUC"
 onclick="setResults(document.getElementById('resultField').value)">Uppercase

<button type="reset">Reset</button>
</form>

• an <input> with type="text" is used for
user input and program output

• value="nada" sets the initial (and reset)
value

• readonly means that the user cannot set the
value, only the script can set the value

• id="resultField" gives us a way to
identify this particular control in our JavaScript

5/11/05 fit100-19-review © 2005 University of Washington 32

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Events Cause Processing
• After drawing a page, the browser sits idle

waiting for something to happen … when
we give input, we cause events

• Processing events is the task of a block of
code called an event handler
» The code to execute is identified in the tag

using the appropriate attribute
» There are many event types

• onClick, onChange, onMouseOver ...

5/11/05 fit100-19-review © 2005 University of Washington 33

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

setResults(resultString)

parameter variable, local variable, if/else statement, field reference,
call to toLowerCase() function

<script type="text/javascript">
function setResults(resultString) {
 var tempString = resultString;
 if (document.getElementById("radioLC").checked) {
 tempString = tempString.toLowerCase();
 } else if (document.getElementById("radioUC").checked) {
 tempString = tempString.toUpperCase();
 }
 document.getElementById("resultField").value = tempString;
}
</script>

5/11/05 fit100-19-review © 2005 University of Washington 34

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

The if / else statement
The if statement is a conditional statement

» a conditional expression is evaluated as being true or false
• the expression is a boolean expression (ie, returns true or false)

» if the condition is true, then one set of statements is executed
» if the statement is false, then a different set of statements is executed

if (<boolean expression>) {
 <statements>
} else {
 <statements>
}

5/11/05 fit100-19-review © 2005 University of Washington 35

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Examples
if (count == 0) {
 ready = false;
} else {
 ready = true;
 count = count-1;
}

What is the conditional expression?
What statements are part of the true block?
Which statements are part of the false block?
What happens when count is 21? 0? -1?

if (pageCount >= 100) {
 alert("This may take a few minutes.");
}

Which statements are part of the false block?
What happens when pageCount is 21? 100? 200?

What is the conditional expression?
What statements are part of the true block?

5/11/05 fit100-19-review © 2005 University of Washington 36

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

More if/else Statements

if (temp < 32) {
if (sky == "cloudy) {

alert("Snow is forecast!");
 }
}

if (temp < 32 && sky == "cloudy") {
alert("Snow is forecast!");

}

5/11/05 fit100-19-review © 2005 University of Washington 37

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

The for loop

A counting loop is usually implemented with for

for (var i=0; i < count; i++) {
 document.writeln("
index value is : "+i);
}

initialize check for limit
update loop control index

shorthand for i=i+1

one or more statements in the loop body

var count = 10;

5/11/05 fit100-19-review © 2005 University of Washington 38

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

i++ is a shortcut
• for (i=0; i < count; i++)

• at the end of every pass through the for
loop body, do the following:
» get the value of i
» increment i
» store the incremented value

• Used as it is here, this is the same as writing
» i = i + 1

5/11/05 fit100-19-review © 2005 University of Washington 39

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

body of loop may not execute at all

• Notice that depending on the values of the
control variables, it is quite possible that the
body of the loop will not execute at all

var itemCount = 0;
...
for (var i=0; i < itemCount; i++) {
 document.writeln("
..processing item "+i);
}

check for limit condition
itemCount is 0 when we get here, so
i<itemCount is immediately false and

the loop body is skipped completely

5/11/05 fit100-19-review © 2005 University of Washington 40

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Arrays
• JavaScript (and most other languages) includes

arrays as the most basic kind of collection.
» Simple, ordered collections
» Special syntax for accessing elements by position

• JavaScript arrays can be created
» by the programmer in the script
» by the system and provided to the script

• for example, the elements array in the iCCC program

5/11/05 fit100-19-review © 2005 University of Washington 41

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Array Example

variable

petNames

index 0

index 1

index 2

String

"Jaba"

String

"Bingo"

String

"Jessica"

length : 5

index 3

index 4

Array

5/11/05 fit100-19-review © 2005 University of Washington 42

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

JavaScript Indexed Arrays

• An indexed array is a data type that stores a collection of
values, accessible by number

» the values in the array are called the elements of the array

» the elements (or values) are accessed by index

• the index of the first value is 0

» the values in the array can be any type

• usually all the values are the same type

• but they can be different from one another if necessary

5/11/05 fit100-19-review © 2005 University of Washington 43

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Array Declaration and Creation

• Arrays can be created several different ways
» var petNames = new Array();

• 0-length array with no elements in it yet
» var studentNames = new Array(102);

• 102-element array, all of which have the value undefined
» var myList = ["Sally", "Splat",
"Google"];
• 3-element array initialized with an array literal

• Arrays have a property that stores the length
<array name>.length

» you can lengthen or shorten an array by setting the length
to a new value

5/11/05 fit100-19-review © 2005 University of Washington 44

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Array Element Access

• Access an array element using the array name and position:
<array name> [<position>]

• Details:
» <position> is an integer expression.
» Positions count from zero

• Update an array element by assigning to it:
<array name> [<position>] = <new element value> ;

myCurrentCarNo = carList.length-1;

myCurrentCar = carList[myCurrentCarNo];

5/11/05 fit100-19-review © 2005 University of Washington 45

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

What the heck is the DOM?

• Document Object Model
» Your web browser builds a model of the web

page (the document) that includes all the
objects in the page (tags, text, etc)

» All of the properties, methods, and events
available to the web developer for manipulating
and creating web pages are organized into
objects

» Those objects are accessible via scripting
languages in modern web browsers

<html>
 <head>
 <title>Sample DOM Document</title>
 </head>
 <body>
 <h1>An HTML Document</h1>
 <p>This is a <i>simple</i> document.
 </body>
</html>

This is what the browser reads (sampleDOM.html).

This is what the browser displays on screen.

Document

<html>

<head>

<title>

"Sample DOM Document"

<body>

<h1> <p>

"An HTML Document"

"This is a"

"simple"

<i> "document"

Figure 17-1. The tree representation of an HTML document
Copied from JavaScript by Flanagan.

This is a drawing of the model that the
browser is working with for the page.

5/11/05 fit100-19-review © 2005 University of Washington 48

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

document.getElementById("radioLC").checked

• Reference to several nodes in the model of the page that the
browser constructed

• document
» The root of the tree is an object of type HTMLDocument
» Using the global variable document, we can access all the nodes in

the tree, as well as useful functions and other global information
• title, referrer, domain, URL, body, images, links, forms, ...
• open, write, close, getElementById, ...

5/11/05 fit100-19-review © 2005 University of Washington 49

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

document.getElementById("radioLC").checked

• getElementById("radioLC")

» This is a predefined function that makes use of
the id that can be defined for any element in
the page

» An id must be unique in the page, so only one
element is ever returned by this function

» The argument to getElementById specifies
which element is being requested

5/11/05 fit100-19-review © 2005 University of Washington 50

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

document.getElementById("radioLC").checked

• checked

» This is a particular property of the node we are
looking at, in this case, a radio button

» Each type of node has its own set of properties
• for radio button: checked, name, ...
• refer to the HTML DOM for specifics for each

element type
» Some properties can be both read and set

5/11/05 fit100-19-review © 2005 University of Washington 51

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Representing Data as Symbols

• 24 Greek Letters
• And we decide to use 2 symbols, binary, to

represent the data.
• How many bits do we need?!?

» 24 total possibilities
» 2x2x2x2x2 = 25 = 32

• We get 6 extra!

5/11/05 fit100-19-review © 2005 University of Washington 52

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Info Representation

• Adult humans have 32 teeth
» sometimes a tooth or two is missing!

• How can we represent a set of teeth?
» How many different items of information?

• 2 items - tooth or no tooth
» How many "digits" or positions to use?

• 32 positions - one per tooth socket

» Choose a set of symbols
no tooth: 0 tooth: 1

5/11/05 fit100-19-review © 2005 University of Washington 53

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

What's your tooth number?

0 0

incisors canines pre-molars molars

1 0 0 0 0 0 0 0 0 0 0 0 0

no teeth ↔ 0000 0000 0000 0000 0000 0000 0000 0000

no molars ↔ 1111 1111 1111 1111 1111 0000 0000 0000

How many possible combinations? 2×2×2×2×...×2 = 232 ≈ 4 Billion

5/11/05 fit100-19-review © 2005 University of Washington 54

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

How many positions should we use?

0
1

one
position

It depends: how many numbers do we need?

two numbers
0
1

two
positions

four numbers

0
0

0
1

1
1

0
1

three
positions

eight numbers

0
0

0
1

1
1

0
1

0
0

0
1

1
1

0
0
0
0
1
1
1
1

5/11/05 fit100-19-review © 2005 University of Washington 55

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Converting from binary to decimal

Each position represents one more multiplication by the base value.

For binary numbers, the base value is 2, so each new column
represents a multiplication by 2.

1
20 = 1

2
21 = 2

2×2
22 = 4

1

2×2×2
23 = 8

0 1 0
base 2

2×2×2×2
24 = 16

25 = 32

26 = 64

1

27 = 128

0 0 0

base 10

!

1"128 + 0 " 64 + 0 " 32 +1" 8 + 0 " 4 +1" 2 + 0 "1=138
10

!

1"128 +1" 8 +1" 2 =138
10

5/11/05 fit100-19-review © 2005 University of Washington 56

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Base 16 Hexadecimal

• The base value can be 16 - hexadecimal numbers
» Sixteen symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
» Each column represents a multiplication by sixteen
» Hex is easier to use than binary because the numbers are

shorter even though they represent the same value

1
160 = 1

16
161 = 16

16×16
162 = 256

0

16×16×16
163 = 4096

0 8 A

base 10

base 16

10
138110168 =!+!

5/11/05 fit100-19-review © 2005 University of Washington 57

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Four binary bits ⇔ One hex digit

0
1

0
0

0
1

1
1

0
1

0
0

0
1

1
1

0
0
0
0
1
1
1
1

binary
base 2

hexdecimal
base 16

0
1
2
3
4
5
6
7

⇔

0
0
0
0
0
0
0
0

0
1

0
0

0
1

1
1

0
1

0
0

0
1

1
1

0
0
0
0
1
1
1
1

binary
base 2

hexdecimal
base 16

8
9
A
B
C
D
E
F

⇔

1
1
1
1
1
1
1
1

decimal
base 10

0
1
2
3
4
5
6
7

⇔

decimal
base 10

8
9

10
11
12
13
14
15

⇔

5/11/05 fit100-19-review © 2005 University of Washington 58

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Binary to Hex examples
0001 0100 0000 1110 0101 1000 0000 1111 base 2

F01A7028
base 16

100000100000011110100001000011112 = 8207A10F16

0001 1100 0010 1010 0110 1001 1101 0111 base 2

100000110100010101101001101111102 = ———————16

