Digital Representation

INFO/CSE 100, Spring 2005
 Fluency in Information Technology

http://www.cs.washington.edu/100

Readings and References

- Reading
» Fluency with Information Technology
- Chapter 8, Bits and the "Why" of Bytes

Info Representation

- Digitization: representing information by any fixed set of symbols
» decide how many different items of information you want to represent
- Tic Tac Toe: 2 items - player 1 or player 2
" decide how many "digits" or positions you want to use
- Tic Tac Toe: 1 position - a board square
» decide on a set of symbols
- player 1: \times
- player 2: O

Are two symbols enough?

We can represent each player's move this way, but what about representing the whole game?

Empty position: *

use this set of symbols

- empty cell: \otimes
- player 1: \times
- player 2: O

- Now we can represent this game as one 9-digit length string:
$\mathrm{O} \otimes \otimes \mathbf{X} \mathbf{X} \otimes \otimes \otimes$
- How many possible game states are there?

$$
\text { » } 3 \times 3=3^{9}=19683
$$

Another encoding

use a different set of symbols

- empty cell: 0
- player 1: 1
- player 2: 2

$\mathbf{2}$	0	0
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$
0	0	0

- Now we can represent this game as one 9-digit number:
200112000
- How many possible game states are there?
» $3 \times 3 \times 3=3^{9}=19683$

Info in the Physical World

- Physical world:
» The most fundamental representation of information is presence/absence of a phenomenon
- matter, light, magnetism, flow, charge, ...

The PandA representation

- detect: "Is the phenomenon present?"
- set: make phenomenon present or absent

Any controllable phenomenon works: define it right

Info in the Logical World

- Logical World:
» Information, reasoning, computation are formulated by true/false and logic
- All men are mortal
- Aristotle is a man
- Aristotle is mortal
- True and false can be the patterns for encoding information
$\theta \theta \theta$

$0 \quad 0 \quad 1$

Connect Physical/Logical

- The power of IT comes from the fact that physical and logical worlds can be connected

Present represents true / Absent represents false

Pavement Memory

false true false false false true true false true false true false false false

0	1	0	0	0	1	1	0	1	0	1	0	0	0

Bits

- PandA is a binary representation because it uses 2 patterns
- The word "bit"
» is a contraction for "binary digit"
» represents a position in space/time capable of being set and detected in 2 patterns

Sherlock Holmes's Mystery of Silver Blaze -a popular example where "absent" gives information ... the dog didn't bark, that is the phenomenon wasn't detected

Possible Interpretations of Bit Patterns

Present	Absent
True	False
1	0
On	Off
Yes	No
+	-
Black	White
For	Against
Yang	Ying
\ldots	\ldots

Assigning Symbols for Characters

26 uppercase and 26 lowercase letters

10 digits
20 basic punctuation characters
$=95$ distinct characters

Representing this many characters in binary takes 7 bits!
2^{6} (6 bits) gives 64 symbols
2^{7} (7 bits) gives 128 symbols

7-bit code for characters is ASCII
(American Standard Code for Information Interchange)

8-bit ASCII

ASCD	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{array}{\|l} \hline 1 \\ 0 \\ 1 \\ 0 \end{array}$	$\begin{aligned} & \hline 1 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{array}{\|l} \hline 1 \\ 1 \\ 0 \\ 0 \end{array}$	$\begin{array}{\|l} \hline 1 \\ 1 \\ 0 \\ 1 \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	1 1 1 1
0000	4	s_{H}	${ }^{5} \times$	5_{5}	${ }_{\text {E }}$	E_{0}	\%	${ }_{\text {E }}$	E_{5}	${ }_{\text {H }}$	${ }^{\text {L }}$	${ }^{\text {\% }}$	${ }_{F}$	${ }^{\circ} \mathrm{F}$	${ }^{5}$	${ }^{5}$
0001	i_{L}	D_{1}	${ }^{\circ}$	s_{3}	B_{4}	${ }^{\text {k }}$	5	E_{B}	${ }_{\text {\% }}$	E_{n}	$5_{\text {B }}$	E_{0}	F_{5}	${ }_{5}$	F_{5}	us_{5}
0010		$!$	"	\#	\$	\%	\&	'	()	*	+	,	-		1
0011	0	1	2	3	4	5	6	7	8	9	:	;	$<$	$=$	$>$?
0100	@	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0
0101	P	Q	R	S	T	U	V	W	X	Y	2	[1	1	n	-
0110		a	b	c	d	e	f	g	h	i	j	k	1	m	n	0
0111	p	q	r	5	t	u	v	W	x	y	z	(\|	\}	\sim	${ }^{\circ} \mathrm{T}$
1000	s_{0}	s_{1}	s_{2}	8_{3}	${ }^{\text {I }} \mathrm{N}$	${ }_{\text {L }}$	5_{5}	E_{5}	H_{5}	${ }_{4}$	${ }_{5}$	$\stackrel{P}{0}$	${ }^{\circ}$	${ }_{\text {I }}$	s_{2}	5_{3}
1001	${ }^{\circ}$	$\stackrel{P}{1}_{1}$	${ }^{\text {P }}$	${ }_{5}$	${ }^{\circ}$	${ }_{H}$	${ }_{5}{ }_{P}$	${ }_{\text {E }}$	$\stackrel{ }{s}$:	${ }^{2}$	${ }^{\circ} \mathrm{s}$	${ }_{5}$	${ }_{5}$	${ }_{\text {¢ }}$	${ }^{-}$
1010	${ }^{\circ}$	i	¢	E	\%	¥	!	§	\cdots	(0)	$\stackrel{+}{+}$	"	\checkmark	-	(1)	-
1011	-	\pm	${ }^{2}$	$\stackrel{ }{3}$,	H	ๆ	-	,	1	δ°	\%	1/4	1/2	\%/4	¿
1100	A	A	A	A	A	\&	E	C	E	É	E	E	İ	I	I	İ
1101	Đ	N	O	Ó	O	O	\bigcirc	\times	Q	U	U	Û	Ü	Y	p	13
1110	à	á	à	ã	ä	a	※	C	è	é	ê	e	1	i	î	1
1111	à	fil	ò	ó	ô	ก̃	0	\div	\square	ù	ú	น̂	ü	$\dot{\text { y }}$	b	\ddot{y}

Bytes

- A byte is eight bits treated as a unit
» Adopted by IBM in 1960s
» A standard measure until very recently
» Bytes encode the Latin alphabet using ASCII -the American Standard Code for Information Interchange

> 01000110
> 01001001
> 01010100

How many bytes?!?

Unicode

- Although 8-bit ASCII is widely used, there is a problem!!!
» Doesn't can't support more than 256 characters
» This eliminates more than half of the world's language from the character set
- Unicode is a 16 -bit representation
» Supports 65,536 symbols
» Can handle all languages
0100011000001001

Escape Codes

- Escape codes solve the problem of creating more symbols
- Put one symbol aside to be the esc symbol.
- Add esc symbol in front of another to create a new symbol
» Ctrl-N
- HTML uses 7-bit ASCII when transmitting data over the web
» HTML uses two special characters < > symbols
» What happens if you want those symbols to appear in the content?
- \< \> \

Hexadecimal Representation

- Computers can very fluently read the binary representations
» 0100001010101110101011110101010001010
- Hex digits (base-16) numbers are used instead
» $0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F$
» Easily represent 4-bit sequences
» $0010101110101101=2 \mathrm{BAD}$
» $0001101101000000=1 \mathrm{~B} 40$
- Examples of hex in use: HTML color codes
» red = \#FF0000

Encoding Information

- Bits and bytes encode the information, but that's not all
» Tags encode format and some structure in word processors
» Tags encode format and some structure in HTML
» In the Oxford English Dictionary tags encode structure and some formatting

Summary

IT joins physical \& logical domains so physical devices do our logical work
" Symbols represent things 1-to-1
» Create symbols by grouping patterns
" PandA representation is fundamental

- presence and absence
» Bit, a place where 2 patterns set/detect
» ASCII is a byte encoding of Latin alphabet
» In addition to content, encode structure

