Algorithms

INFO/CSE 100, Autumn 2004
Fluency in Information Technology

http://www.cs.washington.edu/100

Algorithm

- Algorithm
 » a precise, systematic method to produce a desired result
- For example, the placeholder technique for deleting a short string except where it occurs in longer strings is an algorithm with an easy specification:

  ```
  longStringWithShortStringInIt ← placeholder
  ShortString ← ε
  placeholder ← longStringWithShortStringInIt
  ```

Properties of Algorithms

- For an algorithm to be well specified it must have …
 » Inputs specified
 » The range of possible inputs is well defined
 » Outputs specified
 » The desired output is well defined
 » Definiteness
 » The steps to take are definite and understandable
 » Effectiveness
 » The steps must be possible to accomplish
 » Finiteness
 » A processor that follows the algorithm will eventually finish

Readings and References

- Reading
 » Fluency with Information Technology
 » Chapter 10, Algorithmic Thinking
Communicating with People

- People can fill in missing steps, but can get swamped by lots of details and clutter
- What helps when communicating with people?
 » Be organized, stay on the main point
 » Invent abstractions to help convey the basic ideas quickly
 » Interact with the other person to make sure that you are “on the same page”

Communicating with Computers

- Computers cannot fill in missing steps, but can manage lots and lots of detail without error
- What helps when communicating with computers?
 » Be organized and consistent in all the details
 » Invent abstractions to help specify the basic ideas accurately and consistently
 » Analyze your algorithm and its implementation, because you won’t get to interact later

Example: Directions to the Bookstore

- The student operates at a higher level of abstraction with a richer vocabulary of shorthands
- An algorithm is a plan for how to accomplish a task
 » A program is an implementation of an algorithm
- Good algorithms (at any level of abstraction) require precision

Algorithms Analysis: What is it?

- What is an algorithm?
 » A sequence of steps that accomplishes a task
- Many different algorithms may correctly solve a given task
 » can it be implemented with available equipment?
 » will it complete within this lifetime?
 » will it require gigabytes of memory?
Algorithm Analysis: Why do it?

- Understand the mathematical fundamentals needed to analyze algorithms
- Learn how to compare the efficiency of different algorithms in terms of running time and memory usage
- Study a number of standard algorithms for data manipulation and learn to use them for solving new problems

Multiplication Algorithm

What is 112×8?
What is 112×18?

Programs vs Algorithms

- A program is an algorithm specialized to a particular situation
 - an Algorithm
 - `longStringWithShortStringInIt ← placeholder`
 - `ShortString ← ε`
 - `placeholder ← longStringWithShortStringInIt`
 - a Program that implements the Algorithm
 - `↓ ← #` // replace double <newlines> with <#>
 - `↓ ← ε` // delete all single < newlines>
 - `# ← ↓↓` // restore all double <newlines>

Programming as Communication

- When we write a program, we are communicating with
 - the computer
 - other people
- The computer reads our program as the set of instructions that it should perform
 - It just needs to know how, not why
- Other people read our programs to understand how and why
 - Programs that don't work (bugs)
 - Program evolution - new features
 - Performance improvement
An algorithm to alphabetize CDs

define variable named Artist
use Artist to refer to the name of the group that made a CD
for all slots in the rack starting at one end
call the current slot alpha
for all the remaining slots in the rack
call the next slot beta
Exchange?
If Artist of the CD in the beta slot is earlier in the alphabet than the Artist of the CD in the alpha slot,
interchange the CDs
next beta
next alpha
done

Another version

```java
public static void sort(String[] list) {
    for (int alpha=0; alpha<list.length; alpha++) { // for all slots in the rack starting at one end
        for (int beta=alpha+1; beta<list.length; beta++) { // for all the remaining slots in the rack
            if (list[beta].compareTo(list[alpha]) < 0) { // If beta artist is earlier than alpha artist
                String temp = list[alpha]; // interchange the CDs
                list[alpha] = list[beta];
                list[beta] = temp;
            }
        }
    }
}
```

> java Sorter cat bird ant dog elephant fox
--Unsorted--
cat bird ant dog elephant fox
--Sorted--
ant bird cat dog elephant fox

Metaphor: Programs as Math

• We also can think of programs as executable math:
a program calculates some result for us.
• Consider:
 \[Area = \pi \cdot \text{Radius}^2 \]
• We can employ such expressions in programs.
• Most of our intuitions and knowledge about mathematics apply to computers.
Using the program Matlab to calculate and plot function values

Summary

- We can figure out many algorithms on our own, abstracting from specific cases
- We can learn from others who have studied particular algorithms in depth
- We abstract parts of an algorithm or program to understand them
 » Thinking of how the program works and reasoning about its properties allows us to know why an algorithm works … and then we can get the computer to do it for us