Announcements...

- If you were not in class Monday, find lecture slides on Web and **read 'em**
 www.cs.washington.edu/100/ > Lectures > Lecture 1

To the Day: Experience shows it’s difficult to catch up if you fall behind in FIT 100, so please keep up!

Terms of Endearment

Using the right word speeds learning and helps getting help

Le Mot Juste

Learning le mot juste, the right word for something, aids us in two ways:

- Help Learning ... our brains seem to anchor concepts to words & phrases
- Getting Help ... asking “tech support” for help or using online HELP requires we describe the problem precisely

Terms

Probably familiar terms …

- screen saver
- monitor
- pixel
- RGB
- motherboard
- [micro]processor
- [RAM]memory

Software/Hardware

Hardware refers to physical devices; software refers to programs, the instructions directing a computer

- The main difference is: hardware cannot be changed, while the software can be modified
- Firmware is the intermediate case – instructions stored in hardware (ROM)
Terms

Definitions for “tangible” parts of IT -- RGB, pixel,... -- are found in glossaries

- A glossary is in the back of FIT
- Online glossaries are handy ... locate one
- A useful study aid is to start a document where you store the definitions of the new words you encounter -- later in the term we will show how to set up a DB for them

... the “intangible” words of IT are even more important

To Abstract

abstract v. extract or remove
“The thief abstracted the jewels”
- In FIT100 abstracting will usually involve removing the core idea or process from a specific situation
- Humans abstract core ideas, principles, rules, themes, etc., naturally -- fables
- The “thing removed” is an abstraction

Imagine a Story ...

“...in Kim’s chem class the professor assigned challenge problems worth extra credit, but each week Kim couldn’t do them and asked for help. The teacher said, ‘Don’t give up, attempt the problem again each day.’ Kim followed the advice and was able to solve the problems.”

Abstracting from the situation: A good problem-solving technique is to return to problem.

- Some aspects are relevant
- Some aspects are irrelevant

To Generalize

generalize v. infer a rule
- suppose you notice that faucets turn to the left to turn the water on, and to the right to turn it off
- to infer that all faucets do so is to generalize

Are there other examples?

- Other knobs, screws, nuts/bolts, ...

To Generalize

generalize v. infer a rule
- suppose you notice that faucets turn to the left to turn the water on, and to the right to turn it off
- to infer that all faucets do so is to generalize

Are there other examples?

- Other knobs, screws, nuts/bolts, ...
Operationally Attuned

Noticing how devices operate simplifies their use
Observation: Computers give feedback when they are working for a long time

So, if you think you’re waiting for the computer but there is no feedback, it’s waiting for you
One of the most effective habits new users can adopt is to be operationally attuned.

The Speed of Change

Consider running a mile ...
- How fast can anyone run a mile?
 - In 1999 Hakim El Guerrouj ran it in 3:43.13
- Compare with Roger Bannister
 - In 1954 Bannister ran a mile in 3:59.4
- Express speed as a rate:
 - Bannister’s rate = 15.04 mph
 - El Guerrouj’s rate = 16.27 mph
- In 45 years the mile run got 7% faster

A Speed Comparison

- Compared to normal people ...
 - Healthy people in their twenties … ~7:30
 - That is, El Guerrouj is twice as fast as us
 - As a rate, 7:30 is 8 mph
- El Guerrouj is about a factor-of-2 faster than normal people ...
 - Factor-of-2 is a good rule for human strength

Factors Of Flight

Flyer 1 flew at 10 mph
SR-71 Blackbird flies at 2200 mph
- That’s a factor-of-220 improvement

- A factor of improvement is the amount the old value must be multiplied by to find the new value
 Flyer1_rate x 220 = Blackbird_rate

One More Factor

How fast do computers run? Measure +
- Univac I ran 100,000 adds/sec in 1954
One More Factor

How fast do computers run? Measure +
- Univac I ran 100,000 adds/sec in 1954
- My IBM runs about 500,000,000 adds
 - A factor-of-5,000 improvement

Can we comprehend such speeds or such factors of improvement???

One More Factor

How fast do computers run? Measure +
- Univac I ran 100,000 adds/sec in 1954
- My IBM runs about 500,000,000 adds
 - A factor-of-5,000 improvement
- ASCI Red ran 2,100,000,000,000 in 1999
 - A factor-of-21 Million improvement

If running were like adding

Suppose El Guerrouj had improved on Bannister like ASCI Red improved on the Univac I ...
- Human perception is so slow El Guerrouj could have run 3000 miles before anyone notice that he’d moved
- The sound would still be “inside” the starting gun
- Light is only faster by a factor-of-two

Factors Precisely

A factor of improvement is different than a percent improvement ...
- factor = new_rate/old_rate
- percent = 100 x (new_rate-old_rate)/old_rate
- Expressing an improvement by it’s factor is simpler, especially for large changes
 - El Guerrouj’s 7% improvement over Bannister is a 1.07 factor of improvement

Analytical Approach

One reason to notice the factors of improvement is to recognize scale
- The time for the mile run has improved
- Maximum adds per second has improved
Analytical Approach

One reason to notice the factors of improvement is to recognize scale
• The time for the mile run has improved
• Maximum adds per second has improved
• But the difference in scale is dramatic
 • A factor-of-1.07 for the mile run
 • A factor-of-21,000,000 for additions

Summarizing

It is essential to learn the vocabulary of a new field
• Words of tangible aspects of IT have definitions in glossaries
• Words for the intangible are key
 • Abstract
 • Generalize
 • Operationally Attuned
• Being analytical is key to understanding